Solveeit Logo

Question

Physics Question on work, energy and power

A neutron makes a head-on elastic collision with a stationary deuteron. The fractional energy loss of the neutron in the collision is

A

16/81

B

44782

C

44775

D

44595

Answer

44782

Explanation

Solution

Let the two balls of mass m1m_1 and m2m_2 collide each other elastically with velocities u1u_1 and u2u_2. Their velocities become v1v_1 and v2 v_2 after the collision. Applying conservation of linear momentum, we get m1u1+m2u2=m1v1+m2v2m_1u_1+m_2u_2=m_1v_1+m_2v_2 ......(i) Also from conservation of kinetic energy 12m1u12+12m2u22=12m1v12+12m2v22\frac{1}{2}m_1u^2_1+\frac{1}{2}m_2u^2_2=\frac{1}{2}m_1v^2_1+\frac{1}{2}m_2v^2_2 .....(ii) Solving Eqs. (i) and (ii), we get v1=(m1m2m1+m2)u1+(2m2m1+m2)u2v_1=\left(\frac{m_1-m_2}{m_1+m_2}\right)u_1 +\left(\frac{2m_2}{m_1+m_2}\right)u_2.....(iii) and v2=(m2m1m1+m2)u2+(2m1m1+m2)u1v_2 =\left(\frac{m_2-m_1}{m_1+m_2}\right)u_2+ \left(\frac{2m_1}{m_1+m_2}\right)u_1......(iv) On taking approximate value the mass of deuteron is twice the mass of neutron Given u1=u,u2=0,w,=m,m2=2mu_1 = u, u_2 = 0, w, = m, m_2 = 2m Velocity of neutron v1=(m2mm+2m)u=u3v_1 =\left(\frac{m-2m}{m+2m}\right)u=-\frac{u}{3} Velocity of deuteron v2=2mum+2m=23uv_2 =\frac{2mu}{m+2m}=\frac{2}{3}u Fractional energy loss=12mu212m(u3)212mu2=\frac{\frac{1}{2}mu^2-\frac{1}{2}m\left(-\frac{u}{3}\right)^2}{\frac{1}{2}mu^2} =119=89=1-\frac{1}{9}=\frac{8}{9}