Solveeit Logo

Question

Question: A neutron having mass of \(1.67 \times 10^{- 27}kg\) and moving at \(10^{8}m/s\) collides with a deu...

A neutron having mass of 1.67×1027kg1.67 \times 10^{- 27}kg and moving at 108m/s10^{8}m/s collides with a deutron at rest and sticks to it. If the mass of the deutron is 3.34×1027kg3.34 \times 10^{- 27}kg; the speed of the combination is

A

2.56×103m/s2.56 \times 10^{3}m/s

B

2.98×105m/s2.98 \times 10^{5}m/s

C

3.33×107m/s3.33 \times 10^{7}m/s

D

5.01×109m/s5.01 \times 10^{9}m/s

Answer

3.33×107m/s3.33 \times 10^{7}m/s

Explanation

Solution

m1=1.67×1027kgm_{1} = 1.67 \times 10^{- 27}kg, u1=108m/su_{1} = 10^{8}m ⥂ / ⥂ s,

m2=3.34×1027kgm_{2} = 3.34 \times 10^{- 27}kg and u2=0u_{2} = 0

Speed of the combination

}{= 3.33 \times 10^{7}m ⥂ / ⥂ s.}$$