Solveeit Logo

Question

Physics Question on Combination of capacitors

A network of four capacitors of capacities equal to C1=C,C2=2C,C3=3CC_{1}=C, C_{2}=2 C, C_{3}=3 C and C4=4CC_{4}=4 C are connected to a battery as shown in the figure. The ratio of the charges on C2C_{2} and C4C_{4} is

A

223\frac{22}{3}

B

322\frac{3}{22}

C

74\frac{7}{4}

D

47\frac{4}{7}

Answer

322\frac{3}{22}

Explanation

Solution

The charge flowing through C4C_{4} is q4=C4×V=4CVq_{4}=C_{4} \times V=4\, C V The series combination of C1,C2C_{1}, C_{2} and C3C_{3} gives 1C=1C+12C+13C\frac{1}{C'} =\frac{1}{C}+\frac{1}{2 C}+\frac{1}{3 C} =6+3+26C=116C=\frac{6+3+2}{6 C}=\frac{11}{6 C} C=6C11C'=\frac{6 C}{11} C=6C11\Rightarrow C'=\frac{6 C}{11} Now, CC' and C4C_{4} form parallel combination giving C=C+C4C''=C'+C_{4} =6C11+4C=50C11=\frac{6 C}{11}+4 C=\frac{50 C}{11} Net charge q=CVq=C'' V =5011CV=\frac{50}{11} C V Total charge flowing through C1,C2,C3C_{1}, C_{2}, C_{3} will be q=qq4q'=q-q_{4} =5011CV4CV=6CV11=\frac{50}{11} C V-4 C V=\frac{6 C V}{11} Since, C1,C2C_{1}, C_{2} and C3C_{3} are in series combination hence, charge flowing through these will be same Hence, q2=q1=q3=q=6CV11q_{2}=q_{1}=q_{3}=q'=\frac{6 C V}{11} Thus, q2q4=6CV/114CV=322\frac{q_{2}}{q_{4}}=\frac{6 CV / 11}{4 CV }=\frac{3}{22}