Solveeit Logo

Question

Mathematics Question on Probability

A natural number x is chosen at random from the first 100 natural numbers. Then the probability, for the equation x+100x>50x+\frac{100}{x} > 50 to be true is

A

120\frac{1}{20}

B

1120\frac{11}{20}

C

13\frac{1}{3}

D

320\frac{3}{20}

Answer

1120\frac{11}{20}

Explanation

Solution

Given equation x+100x>50x250x+100>0(x25)2>525x+\frac{100}{x} > 50 \Rightarrow x^{2}-50x+100 > 0 \Rightarrow \left(x-25\right)^{2} > 525 x25(525)\Rightarrow x-25 \sqrt{\left(525\right)} x<25(525)\Rightarrow x < 25-\sqrt{\left(525\right)} or x>25+(525)x > 25+\sqrt{\left(525\right)} As x is positive integer and (525)=22.91\sqrt{\left(525\right)}=22.91, we must have x2x\le2 or x48x \ge48 Let E be the event for favourable cases and S be the sample space. \therefore E=\left\\{1, 2, 48, 49, ......100\right\\} n(E)=55\therefore n\left(E\right)= 55 and n(S)=100n\left(S\right) =100 Hence the required probability P(E)=n(E)n(S)=55100=1120P\left(E\right) =\frac{n\left(E\right)}{n\left(S\right)}=\frac{55}{100}=\frac{11}{20}