Solveeit Logo

Question

Question: A nab running on a horizontal road at 8 ms<sup>-1</sup> finds rain falling vertically. If he increas...

A nab running on a horizontal road at 8 ms-1 finds rain falling vertically. If he increase his speed to 12 ms-1, he finds that drops make 30o angle with the vertical. Find velocity of rain with respect to the road.

A

47\sqrt{7} ms-1

B

82\sqrt{2}ms-1

C

73\sqrt{3}ms-1

D

8 ms-1

Answer

47\sqrt{7} ms-1

Explanation

Solution

Vm = (Vrx - Vm)i^\widehat{i} + Vryj^\widehat{j}

case (i) tan 90 = VryVrxVm=VryVrx8\frac{V_{ry}}{V_{rx} - V_{m}} = \frac{V_{ry}}{V_{rx} - 8} or Vrx = 8 ms-1

case (ii) tan 30 = VrxVmVry=812Vry\frac{V_{rx} - V_{m}}{V_{ry}} = \frac{8 - 12}{V_{ry}} or Vry= - 4√3 ms-1

Vr = 8i^43j^=422+3=47ms18\widehat{i} - 4\sqrt{3}\widehat{j} = 4\sqrt{2^{2} + 3} = 4\sqrt{7}ms^{- 1}

tan θ = VryVrx=438=32\frac{V_{ry}}{V_{rx}} = \frac{4\sqrt{3}}{8} = \frac{\sqrt{3}}{2}

θ = tan-132\frac{\sqrt{3}}{2} with respect to road (horizontally).