Solveeit Logo

Question

Physics Question on The Earth’s Magnetism

A moving coil galvanometer has 100 turns and each turn has an area of 2.0cm22.0 \, \text{cm}^2. The magnetic field produced by the magnet is 0.01T0.01 \, \text{T} and the deflection in the coil is 0.050.05 radians when a current of 10mA10 \, \text{mA} is passed through it. The torsional constant of the suspension wire is x×105Nm/radx \times 10^{-5} \, \text{N} \cdot \text{m/rad}. The value of xx is:

Answer

Given: - Number of turns: N=100N = 100 - Area of each turn: A=2.0cm2=2.0×104m2A = 2.0 \, \text{cm}^2 = 2.0 \times 10^{-4} \, \text{m}^2 - Magnetic field: B=0.01TB = 0.01 \, \text{T} - Deflection: θ=0.05radian\theta = 0.05 \, \text{radian} - Current: I=10mA=10×103AI = 10 \, \text{mA} = 10 \times 10^{-3} \, \text{A}

Step 1: Calculating the Torque Acting on the Coil

The torque (τ\tau) acting on a moving coil galvanometer is given by:

τ=N×B×I×A\tau = N \times B \times I \times A

Substituting the given values:

τ=100×0.01T×10×103A×2.0×104m2\tau = 100 \times 0.01 \, \text{T} \times 10 \times 10^{-3} \, \text{A} \times 2.0 \times 10^{-4} \, \text{m}^2 τ=100×0.01×0.01×2.0×104N×m\tau = 100 \times 0.01 \times 0.01 \times 2.0 \times 10^{-4} \, \text{N} \times \text{m} τ=2×105N×m\tau = 2 \times 10^{-5} \, \text{N} \times \text{m}

Step 2: Relating Torque to the Torsional Constant

The torque is also related to the torsional constant (kk) and deflection (θ\theta) by:

τ=k×θ\tau = k \times \theta

Rearranging to find kk:

k=τθk = \frac{\tau}{\theta}

Substituting the given values:

k=2×1050.05N×m/radk = \frac{2 \times 10^{-5}}{0.05} \, \text{N} \times \text{m/rad} k=4×104N×m/radk = 4 \times 10^{-4} \, \text{N} \times \text{m/rad}

Step 3: Finding the Value of xx

Given that k=x×105N×m/radk = x \times 10^{-5} \, \text{N} \times \text{m/rad}:

4×104=x×1054 \times 10^{-4} = x \times 10^{-5}

Solving for xx:

x=4x = 4

Conclusion: The value of xx is 4.