Solveeit Logo

Question

Question: A moving body with a mass m<sub>1</sub> strikes a stationary body of mass m<sub>2</sub>. The masses ...

A moving body with a mass m1 strikes a stationary body of mass m2. The masses m1m_{1} and m2m_{2} should be in the ratio m1m2\frac{m_{1}}{m_{2}}so as to decrease the velocity of the first body 1.5 times assuming a perfectly elastic impact. Then the ratio m1m2\frac{m_{1}}{m_{2}} is

A

1/ 25

B

1/5

C

5

D

25

Answer

5

Explanation

Solution

v1=(m1m2m1+m2)u1+2m2u2m1+m2=(m1m2m1+m2)u1v_{1} = \left( \frac{m_{1} - m_{2}}{m_{1} + m_{2}} \right)u_{1} + \frac{2m_{2}u_{2}}{m_{1} + m_{2}} = \left( \frac{m_{1} - m_{2}}{m_{1} + m_{2}} \right)u_{1}

[As u2 = 0 and (v1=u11.5)\left( v_{1} = \frac{u_{1}}{1.5} \right) given]

u11.5=(m1m2m1+m2)u1\frac{u_{1}}{1.5} = \left( \frac{m_{1} - m_{2}}{m_{1} + m_{2}} \right)u_{1}m1+m2=1.5(m1m2)m_{1} + m_{2} = 1.5(m_{1} - m_{2})

m1m2=5\frac{m_{1}}{m_{2}} = 5.