Solveeit Logo

Question

Physics Question on Wave optics

A monochromatic source of wavelength 60nm60\, nm was used in Young?s double slit experiment to produce interference pattern. I1I_1 is the intensity of light at a point on the screen where the path difference is 150nm.150\, nm. The intensity of light at a point where the path difference is 200nm200\, nm is given by

A

12I1\frac{1}{2} I_1

B

32I1\frac{3}{2} I_1

C

23I1\frac{2}{3} I_1

D

34I1\frac{3}{4} I_1

Answer

12I1\frac{1}{2} I_1

Explanation

Solution

Given, λ=60nm,Δx1=150nm\lambda=60\,nm , \Delta x_{1}=150\,nm and Δx2=200\Delta x_{2}=200
If the path difference is 150nm150\,nm then intensity
I1=4I0cos2ϕ2I_{1}=4 I_{0} \cos ^{2} \frac{\phi}{2}
where, ϕ=Δxλ2π=15060×2π=5π\phi =\frac{\Delta x}{\lambda} 2 \pi=\frac{150}{60} \times 2 \pi=5 \pi
I1=4I0cos2(5π2)\Rightarrow I_{1}=4 I_{0} \cos ^{2}\left(\frac{5 \pi}{2}\right)
=4I0cos2(2π+π2)=4 I_{0} \cos ^{2}\left(2 \pi+\frac{\pi}{2}\right)
I1=0\Rightarrow I_{1}=0
Similarly, if path difference is 200nm200\,nm then intensity.
I2=4I0cos2ϕ2I_{2}=4 I_{0} \cos ^{2} \frac{\phi}{2}
where, ϕ=20060×2π=203π\phi=\frac{200}{60} \times 2 \pi=\frac{20}{3} \pi
I2=4I0cos2(203π)=I0I_{2}=4 I_{0} \cos ^{2}\left(\frac{20}{3} \pi\right)=I_{0}
So, I1=0I_{1}=0 and I2=I0I_{2}=I_{0}