Solveeit Logo

Question

Question: A monochromatic radiation of wavelength λ<sub>1</sub> is incident on a stationary atom as a result o...

A monochromatic radiation of wavelength λ1 is incident on a stationary atom as a result of which the wavelength of the photon after the collision becomes λ2 and the recoiled atom has De Broglie’s wavelength λ3. Then,

A

λ3 = λ16muλ2\sqrt{\lambda_{1}\mspace{6mu}\lambda_{2}}

B

λ1 = λ26muλ3λ2+λ3\frac{\lambda_{2}\mspace{6mu}\lambda_{3}}{\lambda_{2} + \lambda_{3}}

C

λ1 =λ12+λ22\sqrt{\lambda_{1}^{2} + \lambda_{2}^{2}}

D

λ3 = λ12+λ22\sqrt{\lambda_{1}^{2} + \lambda_{2}^{2}}

Answer

λ1 = λ26muλ3λ2+λ3\frac{\lambda_{2}\mspace{6mu}\lambda_{3}}{\lambda_{2} + \lambda_{3}}

Explanation

Solution

Conservation of momentum yields

hλ1+0=hλ2+mv\frac{h}{\lambda_{1}} + 0 = \frac{h}{\lambda_{2}} + mv

hλ1hλ2=mv\frac{h}{\lambda_{1}} - \frac{h}{\lambda_{2}} = mv

1λ16mu1λ2=mvh\frac{1}{\lambda_{1}} - \mspace{6mu}\frac{1}{\lambda_{2}} = \frac{mv}{h}

Since, hmv6mu=6muλ3\frac{h}{mv}\mspace{6mu} = \mspace{6mu}\lambda_{3}1λ11λ2=1λ3\frac{1}{\lambda_{1}} - \frac{1}{\lambda_{2}} = \frac{1}{\lambda_{3}}

1λ1=1λ2+1λ3\frac{1}{\lambda_{1}} = \frac{1}{\lambda_{2}} + \frac{1}{\lambda_{3}}λ1=λ2λ3λ2+λ3\lambda_{1} = \frac{\lambda_{2}\lambda_{3}}{\lambda_{2} + \lambda_{3}}