Solveeit Logo

Question

Physics Question on Thermodynamics

A monoatomic gas at a pressure PP, having a volume VV expands isothermally to a volume 2V2V and then adiabatically to a volume 16V16\,V. The final pressure of the gas is (Take γ=5/3)\gamma =5/3 )

A

64P

B

32P

C

P64\frac{P}{64}

D

16P

Answer

P64\frac{P}{64}

Explanation

Solution

First, isothermal expansion
PV=P(2V)PV=P'(2V)
(For isothermal process, PV=constant)
P=P2P'= \frac {P}{2}
Then, adiabatic expansion
P(2V)?=Pf(16V)?P'(2V)^? =P_f(16V)^?
(For adiabatic process, PV?=PV^? = constant)
P2(2V)5/3=Pf(16V)5/3\frac {P}{2}(2V)^{5/3}=P_f(16V)^{5/3}
Pf=P2(2V16V)53=P2(18)53=P2P_f=\frac {P}{2}\bigg (\frac {2V}{16 V}\bigg )^{\frac{5}{3}}=\frac {P}{2}\bigg (\frac {1}{8}\bigg )^{\frac{5}{3}}=\frac {P}{2}
(123)53\bigg (\frac {1}{2^3}\bigg )^{\frac{5}{3}}
hspace5mm=P2(125)=P64h\,space\,\,5mm =\frac {P}{2} \bigg (\frac {1}{2^5}\bigg ) = \frac {P}{64}