Solveeit Logo

Question

Chemistry Question on Equilibrium

' aa ' moles of PCl5PCl _{5} are heated in a closed container to equilibriate PCl5(g)PCl3(g)+Cl2(g)PCl _{5}(g) \rightleftharpoons PCl _{3}(g)+ Cl _{2}(g) at a pressure of pp atm. If xx moles of PCl5PCl _{5} dissociate at equilibrium, then

A

xa=(Kpp)1/2\frac{x}{a}=\left(\frac{K_{p}}{p}\right)^{1 / 2}

B

xa=KpKp+p\frac{x}{a}=\frac{K_{p}}{K_{p}+p}

C

xa=(KpKp+p)1/2\frac{x}{a}=\left(\frac{K_{p}}{K_{p}+p}\right)^{1 / 2}

D

xa=(Kp+pKp)1/2\frac{x}{a}=\left(\frac{K_{p}+p}{K_{p}}\right)^{1 / 2}

Answer

xa=(KpKp+p)1/2\frac{x}{a}=\left(\frac{K_{p}}{K_{p}+p}\right)^{1 / 2}

Explanation

Solution

PCl5(g)1αPCl3α+Cl2(g)α\underset{1 - \alpha}{PCl _{5}(g)} \rightleftharpoons \underset{\alpha}{PCl _{3}}+ \underset{\alpha}{Cl _{2}(g)} (where, α=\alpha= degree of dissociation) Total moles =(1α)+α+α=1+α=(1-\alpha)+\alpha+\alpha=1+\alpha Kp=pPCl3×pCl2pPCl5K_{p}=\frac{p_{ PCl _{3}} \times p_{ Cl _{2}}}{p_{ PCl _{5}}} =[(α1+α)p][(α1+α)p][(1α1+α)]=\frac{\left[\left(\frac{\alpha}{1+\alpha}\right) p\right]\left[\left(\frac{\alpha}{1+\alpha}\right) p\right]}{\left[\left(\frac{1-\alpha}{1+\alpha}\right)\right]} Kp=α2p1α2K_{p}=\frac{\alpha^{2} p}{1-\alpha^{2}} or Kpα2Kp=α2pK_{p}-\alpha^{2} K_{p}=\alpha^{2} p or α2(Kp+p)=Kp\alpha^{2}\left(K_{p}+p\right)=K_{p} or α=(KpKp+p)1/2\alpha=\left(\frac{K_{p}}{K_{p}+p}\right)^{1 / 2}