Solveeit Logo

Question

Physics Question on communication systems

A modulated signal Cm(t)C_m(t) has the form Cm(t)=30C_m(t)=30 sin 300πt+10300 \pi t + 10 (cos 200πt200 \pi t - cos 400πt400 \pi t). The carrier frequency fcf_{c}, the modulating frequency (message frequency) fωf_{\omega}, and the modulation index μ\mu are respectively given by :

A

fc=200Hz;fω=50Hz;μ=12f_c = 200 \, Hz ; f_{\omega} = 50 \, Hz ; \mu = \frac{1}{2}

B

fc=150Hz;fω=50Hz;μ=23f_c = 150\, Hz ; f_{\omega} = 50 \, Hz ; \mu = \frac{2}{3}

C

fc=150Hz;fω=50Hz;μ=12f_c = 150\, Hz ; f_{\omega} = 50 \, Hz ; \mu = \frac{1}{2}

D

fc=200Hz;fω=30Hz;μ=12f_c = 200 \, Hz ; f_{\omega} = 30 \, Hz ; \mu = \frac{1}{2}

Answer

fc=150Hz;fω=50Hz;μ=23f_c = 150\, Hz ; f_{\omega} = 50 \, Hz ; \mu = \frac{2}{3}

Explanation

Solution

m(t)=30sin(300πt)+10cos(400πt)\ell_{m}(t)=30 \sin (300 \pi t)+10 \cos (400 \pi t)
f=ω2π=300π2π=150f=\frac{\omega}{2 \pi}=\frac{300 \pi}{2 \pi}=150
=20π2π=100=\frac{20 \pi}{2 \pi}=100
400π2π=200\frac{400 \pi}{2 \pi}=200
fc=150Hzf _{ c }=150\, Hz
fm=50Hzf _{ m }=50\, Hz
μ=23\mu=\frac{2}{3}