Solveeit Logo

Question

Question: A mixture of \(_{{\text{239}}}{\text{Pu}}\)and \(_{{\text{240}}}{\text{Pu}}\) has a specific activit...

A mixture of 239Pu_{{\text{239}}}{\text{Pu}}and 240Pu_{{\text{240}}}{\text{Pu}} has a specific activity of 6×109{\text{6}} \times {\text{1}}{{\text{0}}^{\text{9}}} dis/s/g. The half-lives of the isotopes are 2.44×104{\text{2}}{\text{.44}} \times {\text{1}}{{\text{0}}^4}year and 6.58×103{\text{6}}{\text{.58}} \times {\text{1}}{{\text{0}}^3}year respectively. Calculate the isotopic composition of this sample.
A. 239Pu = 42_{{\text{239}}}{\text{Pu}}\,{\text{ = }}\,{\text{42}}%, 240Pu = 58_{{\text{240}}}{\text{Pu}}\,{\text{ = }}\,{\text{58}}%
B. 239Pu = 41_{{\text{239}}}{\text{Pu}}\,{\text{ = }}\,{\text{41}}%, 240Pu = 59_{{\text{240}}}{\text{Pu}}\,{\text{ = }}\,{\text{59}}%
C. 239Pu = 40_{{\text{239}}}{\text{Pu}}\,{\text{ = }}\,{\text{40}}%, 240Pu = 60_{{\text{240}}}{\text{Pu}}\,{\text{ = }}\,60%
D. 239Pu = 39_{{\text{239}}}{\text{Pu}}\,{\text{ = }}\,39%, 240Pu = 61_{{\text{240}}}{\text{Pu}}\,{\text{ = }}\,61%

Explanation

Solution

To determine the answer we should know the formula of specific activity. First we will calculate the specific activity of each isotope. Then by assuming the fraction of one isotope as x and second is as 1x1 - {\text{x}}, we will determine the value of x that will give the composition of one isotope of the sample.

Complete step-by-step solution:
First we will convert the half-lives from year to second as follows:
For 239Pu_{{\text{239}}}{\text{Pu}},
1year = 365days ×24hour×60minute×60seccond{\text{1year}}\,{\text{ = }}\,{\text{365days}}\,{\ \times }\,\,{24hour \times }\,\,{\text{60}}\,{minute \times }\,\,{\text{60seccond}}
2.44×104year=7.69×1011second{\text{2}}{\text{.44}} \times {\text{1}}{{\text{0}}^4}{\text{year}}\, = \,{\text{7}}{\text{.69}} \times {\text{1}}{{\text{0}}^{11}}{\text{second}}
For 240Pu_{{\text{240}}}{\text{Pu}},
6.58×103year=2.07×1011second{\text{6}}{\text{.58}} \times {\text{1}}{{\text{0}}^3}{\text{year}}\, = \,{\text{2}}{\text{.07}} \times {\text{1}}{{\text{0}}^{11}}{\text{second}}year
The formula which relates the half-life and specific activity is as follows:
a = 0.693Nat1/2M{\text{a}}\,{\text{ = }}\,\dfrac{{{\text{0}}{\text{.693}}\,{{\text{N}}_{\text{a}}}}}{{{{\text{t}}_{{\text{1/2}}}}{\text{M}}}}
Where,
a{\text{a}}is the specific activity
Na{{\text{N}}_{\text{a}}}is the Avogadro number
t1/2{{\text{t}}_{{\text{1/2}}}}is the half-life
M{\text{M}}is the molar mass
We will calculate the specific activity of each isotope as follows:
On substituting 6.023×10236.023 \times {10^{23}} for Avogadro number, 7.69×1011{\text{7}}{\text{.69}} \times {\text{1}}{{\text{0}}^{11}}for half-life of 239Pu_{{\text{239}}}{\text{Pu}}, 239239for molar mass of 239Pu_{{\text{239}}}{\text{Pu}},
a = 0.693×6.023×10237.69×1011×239{\text{a}}\,{\text{ = }}\,\dfrac{{{\text{0}}{\text{.693}}\, \times \,6.023 \times {{10}^{23}}}}{{{\text{7}}{\text{.69}} \times {\text{1}}{{\text{0}}^{11}}\, \times {\text{239}}}}
a = 4.17×10231.83×104{\text{a}}\,{\text{ = }}\,\dfrac{{4.17 \times {{10}^{23}}}}{{{\text{1}}{\text{.83}} \times {\text{1}}{{\text{0}}^4}\,}}
a = 2.27×109{\text{a}}\,{\text{ = }}\,2.27 \times {10^9}
So, the specific activity of 239Pu_{{\text{239}}}{\text{Pu}}is 2.27×1092.27 \times {10^9} /s/g.
On substituting 6.023×10236.023 \times {10^{23}} for Avogadro number, 2.07×1011{\text{2}}{\text{.07}} \times {\text{1}}{{\text{0}}^{11}}for half-life of 240Pu_{{\text{240}}}{\text{Pu}}, 240240for molar mass of240Pu_{{\text{240}}}{\text{Pu}},
a = 0.693×6.023×10232.07×1011×240\Rightarrow {\text{a}}\,{\text{ = }}\,\dfrac{{{\text{0}}{\text{.693}}\, \times \,6.023 \times {{10}^{23}}}}{{{\text{2}}{\text{.07}} \times {\text{1}}{{\text{0}}^{11}}\, \times {\text{240}}}}
a = 4.17×10234.98×1013\Rightarrow {\text{a}}\,{\text{ = }}\,\dfrac{{4.17 \times {{10}^{23}}}}{{{\text{4}}{\text{.98}} \times {\text{1}}{{\text{0}}^{13}}\,}}
a = 8.37×109\Rightarrow {\text{a}}\,{\text{ = }}\,8.37 \times {10^9}

So, the specific activity of 240Pu_{{\text{240}}}{\text{Pu}}is 8.37×1098.37 \times {10^9} /s/g.
We assume that amount of 239Pu_{{\text{239}}}{\text{Pu}}is x than the amount of 240Pu_{{\text{240}}}{\text{Pu}} will be 1x1 - {\text{x}}. So, the specific activity of 239Pu_{{\text{239}}}{\text{Pu}}will be 2.27×1092.27 \times {10^9} x and specific activity of 240Pu_{{\text{240}}}{\text{Pu}} will be 8.37×1098.37 \times {10^9} 1x1 - {\text{x}}. It is given that specific activity of the mixture is 6×109{\text{6}} \times {\text{1}}{{\text{0}}^{\text{9}}} dis/s/g.

So, the sum of specific activity of 239Pu_{{\text{239}}}{\text{Pu}}and 240Pu_{{\text{240}}}{\text{Pu}} will be equal to 6×109{\text{6}} \times {\text{1}}{{\text{0}}^{\text{9}}} dis/s/g. so,
2.27×109x + 8.37×109(1x) = 6×109\Rightarrow 2.27 \times {10^9}\,{\text{x}}\,{\text{ + }}\,8.37 \times {10^9}\,(1 - {\text{x)}}\,{\text{ = }}\,{\text{6}} \times {\text{1}}{{\text{0}}^{\text{9}}}
2.27×109x + 8.37×1098.37×109x = 6×109\Rightarrow 2.27 \times {10^9}\,{\text{x}}\,{\text{ + }}\,8.37 \times {10^9} - 8.37 \times {10^9}{\text{x}}\,{\text{ = }}\,{\text{6}} \times {\text{1}}{{\text{0}}^{\text{9}}}
2.27×109x8.37×109x = 6×1098.37×109\Rightarrow 2.27 \times {10^9}\,{\text{x}}\, - 8.37 \times {10^9}{\text{x}}\,{\text{ = }}\,{\text{6}} \times {\text{1}}{{\text{0}}^{\text{9}}} - 8.37 \times {10^9}
2.27×109x8.37×109x = 6×1098.37×109\Rightarrow 2.27 \times {10^9}\,{\text{x}}\, - 8.37 \times {10^9}{\text{x}}\,{\text{ = }}\,{\text{6}} \times {\text{1}}{{\text{0}}^{\text{9}}} - 8.37 \times {10^9}
6.1×109x=2.37×109\Rightarrow - 6.1 \times {10^9}{\text{x}}\, = \, - 2.37 \times {10^9}
x=2.37×1096.1×109\Rightarrow {\text{x}}\, = \,\dfrac{{2.37 \times {{10}^9}}}{{6.1 \times {{10}^9}}}
x=0.39{\text{x}}\, = \,0.39

So, the fraction of 239Pu_{{\text{239}}}{\text{Pu}} in the total mixture is 0.390.39. We can multiply this fraction with 100100 to convert it into percentage. So,
239Pu = 0.39×100\Rightarrow _{{\text{239}}}{\text{Pu}}\,{\text{ = }}\,0.39 \times \,100
239Pu = 39\Rightarrow _{{\text{239}}}{\text{Pu}}\,{\text{ = }}\,39%
The fraction of 240Pu_{{\text{240}}}{\text{Pu}} is 1x1 - {\text{x}} so, on substituting the value of x,
240Pu = 139\Rightarrow _{{\text{240}}}{\text{Pu}}\,{\text{ = }}\,{\text{1}}\, - \,39
240Pu = 61\Rightarrow _{{\text{240}}}{\text{Pu}}\,{\text{ = }}\,61%
So, the isotopic composition of the given sample is 239Pu = 39_{{\text{239}}}{\text{Pu}}\,{\text{ = }}\,39%, 240Pu = 61_{{\text{240}}}{\text{Pu}}\,{\text{ = }}\,61%.

Thus, the correct option is (D).

Note: The radioactive disintegration per second per kilogram is known as specific activity. The atoms having the same atomic number but different mass numbers are known as isotopes. The isotopes have the same atomic number hence represent the same element. The total fraction of all isotopes of an element is considered as 100100%.