Solveeit Logo

Question

Question: A mixture of $NH_3(g)$ and $N_2H_4(g)$ is placed in a sealed container at 300 K. The total pressure ...

A mixture of NH3(g)NH_3(g) and N2H4(g)N_2H_4(g) is placed in a sealed container at 300 K. The total pressure is 0.5 atm. The container is heated to 1200 K at which time both substances decompose completely according to the equations

2NH3(g)N2(g)+3H2(g)2NH_3(g) \longrightarrow N_2(g) + 3H_2(g)

and

N2H4(g)N2(g)+2H2(g)N_2H_4(g) \longrightarrow N_2(g) + 2H_2(g)

After decomposition is complete, the total pressure at 1200 K is found to be 4.5 atm. Find the mole% of N2H4N_2H_4 in the original mixture.

A

20%

B

25%

C

50%

D

75%

Answer

25%

Explanation

Solution

Let initial moles of NH₃ and N₂H₄ be x and y.

  • Initial total moles: n = x + y.
  • Initial pressure at 300 K: P₁ ∝ n·300.
  • On decomposition at 1200 K: • NH₃ → produces 2 moles gas per mole NH₃ ⇒ 2x
    • N₂H₄ → produces 3 moles gas per mole N₂H₄ ⇒ 3y
    Total final moles = 2x + 3y.
  • Final pressure at 1200 K: P₂ ∝ (2x+3y)·1200.
    Since volume and R cancel,
P2P1=(2x+3y)1200(x+y)300=4(2x+3y)(x+y)=4.50.5×0.50.5=9?\frac{P_2}{P_1}=\frac{(2x+3y)\,1200}{(x+y)\,300} =\frac{4\,(2x+3y)}{(x+y)}=\frac{4.5}{0.5}\times\frac{0.5}{0.5}=9?

More directly:

P1=0.5 atm,P2=4.5 atm    P2P1=9P_1=0.5\text{ atm},\quad P_2=4.5\text{ atm}\;\Rightarrow\;\frac{P_2}{P_1}=9 (2x+3y)1200(x+y)300=9    2x+3yx+y=94=2.25\frac{(2x+3y)\,1200}{(x+y)\,300}=9 \;\Longrightarrow\;\frac{2x+3y}{x+y}= \frac{9}{4}=2.25 2x+3y=2.25(x+y)    2x+3y=2.25x+2.25y    0.75y=0.25x    y=x32x+3y=2.25(x+y)\;\Longrightarrow\;2x+3y=2.25x+2.25y \;\Longrightarrow\;0.75y=0.25x\;\Longrightarrow\;y=\frac{x}{3}

Mole fraction of N₂H₄ = y/(x+y) = (x/3)/(4x/3) = 1/4 = 25%.