Solveeit Logo

Question

Question: A mixture of ethanol and \({\text{CC}}{{\text{l}}_{\text{4}}}\) has 30 % \({\text{CC}}{{\text{l}}_{\...

A mixture of ethanol and CCl4{\text{CC}}{{\text{l}}_{\text{4}}} has 30 % CCl4{\text{CC}}{{\text{l}}_{\text{4}}} by weight, What is mole fraction of CCl4{\text{CC}}{{\text{l}}_{\text{4}}} in the mixture?
(A) 0.11
(B) 0.89
(C) 0.25
(D) 0.67

Explanation

Solution

We can define the mole fraction of a component as a ratio of the mole of that component to the total number of moles present in the system.
The mole fraction formula in any solution, the mole fraction of solute AA is = Moles  of  ATotal  number  of  moles\dfrac {Moles\;of\;A}{Total\;number\;of\;moles}
Mathematically, we can write,
Mole fraction of A = Number of moles of ATotal number of moles = nAntotal{\text{Mole fraction of A = }}\dfrac{{{\text{Number of moles of A}}}}{{{\text{Total number of moles}}}}{\text{ = }}\dfrac{{{{\text{n}}_A}}}{{{{\text{n}}_{total}}}}.
Where,
{{\text{n}}_A}$$$$ = Number of moles of A component.
{{\text{n}}_{total}}$$$$ = Total number of moles present in the system.

Complete step by step answer:
Given, A mixture of ethanol and CCl4{\text{CC}}{{\text{l}}_{\text{4}}} has 30 % CCl4{\text{CC}}{{\text{l}}_{\text{4}}} by weight.
So, we can say, 30g30g CCl4{\text{CC}}{{\text{l}}_{\text{4}}} is present in the 100g mixture.
So, Mass of {\text{CC}}{{\text{l}}_{\text{4}}}$$$ = {\text{ }}30g$$ Mass of ethanol = 100 - 30 = 70{\text{gm}} \therefore MolesofMoles of {\text{CC}}{{\text{l}}{\text{4}}}presentpresent = \dfrac{{30}}{{154}} = 0.195 \left[ {{\text{Molecular weight of CC}}{{\text{l}}{\text{4}}} = 12 + \left( {35.5 \times 4} \right) = 154} \right] \therefore MolesofMoles of {\text{ C}}{{\text{H}}{\text{3}}}{\text{C}}{{\text{H}}{\text{2}}}{\text{OH}};{\text{ = }}\dfrac{{{\text{70}}}}{{{\text{46}}}}{\text{ = 1}}{\text{.521}}$

\left[ {{\text{Molecular weight of Ethanol (}}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}{\text{OH) = }}\left( {{\text{12 \times2}}} \right){\text{ + }}\left( {{\text{6\times 1}}} \right){\text{ + 16 = 46}}} \right]
Now, we have the number of moles of both CCl4{\text{CC}}{{\text{l}}_{\text{4}}}and Ethanol.
So, we can use the formula,
Mole fraction of CCl4 = Number of moles of CCl4Total number of moles = nCCl4ntotal{\text{Mole fraction of CC}}{{\text{l}}_{\text{4}}}{\text{ = }}\dfrac{{{\text{Number of moles of CC}}{{\text{l}}_{\text{4}}}}}{{{\text{Total number of moles}}}}{\text{ = }}\dfrac{{{{\text{n}}_{{\text{CC}}{{\text{l}}_{\text{4}}}}}}}{{{{\text{n}}_{{\text{total}}}}}}
\therefore Mole fraction of CCl4=0.195(0.195+1.521)=0.11{\text{CC}}{{\text{l}}_{\text{4}}} = \dfrac{{0.195}}{{\left( {0.195 + 1.521} \right)}} = 0.11

Hence, the correct option (A) is the right answer.

Note: The sum of all the mole fractions is equal to 11:
i=1Nni=ntot;    i=1Nxi=1.\sum\limits_{i = 1}^N {{n_i} = {n_{tot}};\;\;\sum\limits_{i = 1}^N {{x_i} = 1.} }
Mole fraction is a quantity which is basically used to define concentration of a component in a mixture.
We can use this quantity to determine many properties like entropy change of mixing, free energy change of mixing, internal energy change of a gaseous system etc.
Mole fraction is a unit-less quantity.