Solveeit Logo

Question

Question: A meutron collides, head-on with a deuterium at rest. What fraction of the neutron’s energy would be...

A meutron collides, head-on with a deuterium at rest. What fraction of the neutron’s energy would be transferred to the deuterium?

A

89%

B

11%

C

79%

D

21%

Answer

89%

Explanation

Solution

According to law of conservation of linear momentum, we get

mnvni+md×0=mnvnf+mdvdfm_{n}v_{ni} + m_{d} \times 0 = m_{n}v_{nf} + m_{d}v_{df}

Where vniv_{ni}is the initial velocity of the neutron before collision and vnfv_{nf}and vdfv_{df}are the velocities of the neutron and deuterium after collision

mnvni=mnvnf+mdvdfm_{n}v_{ni} = m_{n}v_{nf} + m_{d}v_{df} (i)

According to conservation of kinetic energy, we get

12mnvni2=12mnvnf2+12mdvdf2\frac{1}{2}m_{n}v_{ni}^{2} = \frac{1}{2}m_{n}v_{nf}^{2} + \frac{1}{2}m_{d}v_{df}^{2} ……(ii)

From eqs. (i) and (ii), it follows that

mnvni(vdfvni)=mnvnf(vdfvnf)m_{n}v_{ni}(v_{df} - v_{ni}) = m_{n}v_{nf}(v_{df} - v_{nf})

vdf(vnivnf)=vni2vnf2v_{df}(v_{ni} - v_{nf}) = v_{ni}^{2} - v_{nf}^{2}

vdf=vni+vnfv_{df} = v_{ni} + v_{nf}

Substituting this in Eq. (i), we get

vnf=(mnmd)mn+mdvniv_{nf} = \frac{(m_{n} - m_{d})}{m_{n} + m_{d}}v_{ni} ……(iii)

andvdf=2mnvnimn+mdandv_{df} = \frac{2m_{n}v_{ni}}{m_{n} + m_{d}} ……..(iv)

The initial kinetic energy of the neutron is

kni=12mnvni2k_{ni} = \frac{1}{2}m_{n}v_{ni}^{2}

Final kinetic energy of the deuterium is

Kdf=12mdvdf2=12md(2mnvnimn+md)K_{df} = \frac{1}{2}m_{d}v_{df}^{2} = \frac{1}{2}m_{d}\left( \frac{2m_{n}v_{ni}}{m_{n} + m_{d}} \right) (Using (iv))

Fraction of neutron’s energy transferred to deuterium is

f=KdfKni=4mnmd(mn+md)2f = \frac{K_{df}}{K_{ni}} = \frac{4m_{n}m_{d}}{(m_{n} + m_{d})^{2}}

For deuterium, md=2mnm_{d} = 2m_{n}

f=4(mn)(2mn)(mn+2mn)2=89=89%\therefore f = \frac{4(m_{n})(2m_{n})}{(m_{n} + 2m_{n})^{2}} = \frac{8}{9} = 89\%