Solveeit Logo

Question

Question: A meter bridge set up as shown to determine end correction at \(A\) and \(B\). When a resistance of ...

A meter bridge set up as shown to determine end correction at AA and BB. When a resistance of 15 Ω15{\text{ }}\Omega is used in left gap and of 20 Ω20{\text{ }}\Omega in right gap, then null point comes at a distance 42 cm42{\text{ }}cm from AA. When these resistance are interchanged, the null point comes at a distance 57 cm57{\text{ }}cm from AA.Values of end correction are:

A. 1 cm1{\text{ }}cm, 2 cm2{\text{ }}cm\:
B. 2 cm2{\text{ }}cm, 3 cm3{\text{ }}cm\:
C. 3 cm3{\text{ }}cm, 4 cm4{\text{ }}cm\:
D. 3 cm3{\text{ }}cm, 2 cm2{\text{ }}cm\:

Explanation

Solution

Firstly, we will use the idea of Wheatstone bridge principle. Then, we will take into consideration our concept of end correction. Finally, we will form equations for end corrections in each case and then solve the equations and evaluate the required answers.

Formula Used:
RS =L + α100  L +β\dfrac{R}{S}{\text{ }} = \dfrac{{L{\text{ }} + {\text{ }}\alpha }}{{100{\text{ }} - {\text{ }}L{\text{ }} + \beta }}

Complete step by step answer:
The null point of a meter bridge is the point on the wire where the ratio of resistances connected in the gap becomes proportional to the ratio of the lengths of the pin of the meter bridge from either side of the bridge. When this happens, there is no current flowing through the galvanometer and thus the name null point. For the first case, we have
R = 15 ΩR{\text{ }} = {\text{ }}15{\text{ }}\Omega
S = 20 Ω\Rightarrow S{\text{ }} = {\text{ }}20{\text{ }}\Omega
L = 42 cm\Rightarrow L{\text{ }} = {\text{ }}42{\text{ }}cm
Thus, putting these values in the formula for the Wheatstone bridge, we get
1520 = 42 + α58 + β\dfrac{{15}}{{20}}{\text{ }} = {\text{ }}\dfrac{{42{\text{ }} + {\text{ }}\alpha }}{{58{\text{ }} + {\text{ }}\beta }}

Cross multiplying, we get
15 (58 + β) = 20 (42 + α)15{\text{ }}(58{\text{ }} + {\text{ }}\beta ){\text{ }} = {\text{ }}20{\text{ }}(42{\text{ }} + {\text{ }}\alpha )
Then, the equation turns out to be
870 + 15β = 840 + 20α870{\text{ }} + {\text{ }}15\beta {\text{ }} = {\text{ }}840{\text{ }} + {\text{ }}20\alpha
Thus, we have the equation as
20α  15β = 30  (i)20\alpha {\text{ }} - {\text{ }}15\beta {\text{ }} = {\text{ }}30{\text{ }} - - - - - - - - - - - - - {\text{ }}(i)
Now, for the second case,
R = 20 ΩR{\text{ }} = {\text{ }}20{\text{ }}\Omega
S = 15 Ω\Rightarrow S{\text{ }} = {\text{ }}15{\text{ }}\Omega
L = 57 cm\Rightarrow L{\text{ }} = {\text{ }}57{\text{ }}cm
Thus, putting in the values in the formula for Wheatstone bridge, we get
2015 = 57 + α43 + β\dfrac{{20}}{{15}}{\text{ }} = {\text{ }}\dfrac{{57{\text{ }} + {\text{ }}\alpha }}{{43{\text{ }} + {\text{ }}\beta }}
Further, we get
20 (43 + β) = 15 (57 + α)20{\text{ }}(43{\text{ }} + {\text{ }}\beta ){\text{ }} = {\text{ }}15{\text{ }}(57{\text{ }} + {\text{ }}\alpha )
Then, we get
860 + 20β = 855 + 15α860{\text{ }} + {\text{ }}20\beta {\text{ }} = {\text{ }}855{\text{ }} + {\text{ }}15\alpha
Further, we get
15α  20β = 5  (ii)15\alpha {\text{ }} - {\text{ }}20\beta {\text{ }} = {\text{ }}5{\text{ }} - - - - - - - - - - - - - - - - - - - {\text{ }}(ii)

Now, evaluating 3 × (i)  4 × (ii)3{\text{ }} \times {\text{ }}(i){\text{ }} - {\text{ }}4{\text{ }} \times {\text{ }}(ii), we get
60α  45β  60α + 80β = 90  2060\alpha {\text{ }} - {\text{ }}45\beta {\text{ }} - {\text{ }}60\alpha {\text{ }} + {\text{ }}80\beta {\text{ }} = {\text{ }}90{\text{ }} - {\text{ }}20
Thus, we get
35β = 7035\beta {\text{ }} = {\text{ }}70
Evaluating further, we get
β = 2\beta {\text{ }} = {\text{ }}2
Substituting these values in equation (i)(i), we get
20α  15 × 2 = 3020\alpha {\text{ }} - {\text{ }}15{\text{ }} \times {\text{ }}2{\text{ }} = {\text{ }}30
Further, we get
20α  30 = 3020\alpha {\text{ }} - {\text{ }}30{\text{ }} = {\text{ }}30
Then, we have
20α = 6020\alpha {\text{ }} = {\text{ }}60
Thus, we get
α = 3\therefore \alpha {\text{ }} = {\text{ }}3
Hence, the end corrections are 2 cm2{\text{ }}cm, 3 cm3{\text{ }}cm.

Thus, the correct option is B.

Note: Students often commit errors while solving the equations as they select a method where they fall into some clumsy calculations leading them eventually to the wrong answer. Students should keep in mind that the end correction is a necessary parameter in getting accurate and precise observations keeping the practical side of the meter bridge.