Solveeit Logo

Question

Physics Question on mechanical properties of solids

A metallic rod of length L, area of cross-section A, Young's modulus Y has coefficient of linear expansion a. If the rod is heated through a temperature T, the energy stored per unit volume will be:

A

12YαT\frac 12 Y \alpha T

B

12Yα2T2\frac 12 Y\alpha ^{2} T^{2}

C

12YαT2\frac 12 Y \alpha T^2

D

12Y2αT2\frac 12 Y ^{2}\alpha T^{2}

Answer

12Yα2T2\frac 12 Y\alpha ^{2} T^{2}

Explanation

Solution

We know that the energy stored per unit volume =12=\frac{1}{2} (stress)(strain) = 12(Y)( strain )2\frac{1}{2}( Y )(\text { strain })^{2} Now strain = fractional change in length =αT=\alpha T (using thermal expansion formula) So energy stored per unit volume =12Yα2T2=\frac{1}{2} Y \alpha^{2} T ^{2}