Solveeit Logo

Question

Physics Question on Gravitation

A metal wire of uniform mass density having length L and mass M is bent to form a semicircular arc and a particle of mass m is placed at the centre of the arc. The gravitational force on the particle by the wire is:

A

GmMπ2L2\frac{GmM\pi}{2L^2}

B

0

C

GmMπ2L2\frac{GmM\pi^2}{L^2}

D

2GmMπL2\frac{2GmM\pi}{L^2}

Answer

2GmMπL2\frac{2GmM\pi}{L^2}

Explanation

Solution

Consider the Semi-circular Arc of the Wire:
Length of the semi-circular arc: L=πRL = \pi R, where RR is the radius of the semicircle.
Mass per unit length of the wire, λ=ML=MπR\lambda = \frac{M}{L} = \frac{M}{\pi R}.

Gravitational Force Element dFdF:
Consider a small element dldl of the arc at an angle θ\theta from the center, with a mass dmdm:
dm=λdl=MπR×Rdθ=Mπdθdm = \lambda dl = \frac{M}{\pi R} \times R d\theta = \frac{M}{\pi} d\theta

The gravitational force dFdF exerted by this element on the particle of mass mm at the center is:
dF=G×m×dmR2=Gm×MπdθR2=GmMπR2dθdF = \frac{G \times m \times dm}{R^2} = \frac{Gm \times \frac{M}{\pi} d\theta}{R^2} = \frac{GmM}{\pi R^2} d\theta

Resolve dFdF into Components:
Each element of the arc exerts a gravitational force toward itself. The horizontal components (along the x-axis) will cancel due to symmetry, and only the vertical components (along the y-axis) will add up.
The vertical component of dFdF is:
dFy=dFcosθ=GmMπR2cosθdθdF_y = dF \cos \theta = \frac{GmM}{\pi R^2} \cos \theta \, d\theta

Integrate dFydF_y Over the Semicircle:
To find the total gravitational force FyF_y on the particle, integrate dFydF_y from π2-\frac{\pi}{2} to π2\frac{\pi}{2}:
Fy=π/2π/2GmMπR2cosθdθF_y = \int_{-\pi/2}^{\pi/2} \frac{GmM}{\pi R^2} \cos \theta \, d\theta

Fy=GmMπR2π/2π/2cosθdθF_y = \frac{GmM}{\pi R^2} \int_{-\pi/2}^{\pi/2} \cos \theta \, d\theta

Fy=GmMπR2[sinθ]π/2π/2F_y = \frac{GmM}{\pi R^2} \left[ \sin \theta \right]_{-\pi/2}^{\pi/2}

Fy=GmMπR2(sinπ2sin(π2))F_y = \frac{GmM}{\pi R^2} \left( \sin \frac{\pi}{2} - \sin \left( -\frac{\pi}{2} \right) \right)

Fy=GmMπR2(1+1)=2GmMπR2F_y = \frac{GmM}{\pi R^2} (1 + 1) = \frac{2GmM}{\pi R^2}

Substitute R=LπR = \frac{L}{\pi}:
Since L=πRL = \pi R, we have R=LπR = \frac{L}{\pi}.

Substitute this into the expression for FyF_y:
Fy=2GmMπ(Lπ)2=2GmMπL2F_y = \frac{2GmM}{\pi \left( \frac{L}{\pi} \right)^2} = \frac{2GmM\pi}{L^2}

Conclusion:
The gravitational force on the particle by the wire is:
F=2GmMπL2F = \frac{2GmM\pi}{L^2}