Solveeit Logo

Question

Physics Question on mechanical properties of fluid

A metal wire of density ρ'\rho' floats on water surface horizontally. If it is NOT to sink in water then maximum radius of wire is proportional to (T = surface tension of water, g = gravitational acceleration)

A

Tπρg\sqrt{\frac{T}{\pi\rho g }}

B

πρgT\sqrt{\frac{\pi\rho g }{T}}

C

Tπρg\frac{T}{\pi\rho g }

D

πρgT\frac{\pi\rho g }{T}

Answer

Tπρg\sqrt{\frac{T}{\pi\rho g }}

Explanation

Solution

Given, density of metal wire =ρ=\rho
Surface tension of water =T=T
If l is the length of the wire and ff the total force on either side of the wire, then
f=Tl(i)f=T l \,\,\,\,\,\, (i)
Also, f=mg(ii)\,\,\,f=m g \,\,\,\,\, (ii)
From Eqs. (i) and (ii), we get
Tl=mgT l=m g
Tl=vρg[ Density (ρ)=mv]T l=v \rho g \,\,\,\,\,\,\left[\because \text { Density }(\rho)=\frac{m}{v}\right]
Tl=πr2/ρgT l=\pi r^{2} / \rho g
r2=Tπρgr=Tπρgr^{2}=\frac{T}{\pi \rho g} \Rightarrow r=\sqrt{\frac{T}{\pi \rho g}}