Solveeit Logo

Question

Question: A metal surface of 100 cm$^2$ area has to be coated with nickel layer of thickness 0.001 mm. A curre...

A metal surface of 100 cm2^2 area has to be coated with nickel layer of thickness 0.001 mm. A current of 2 A was passed through a solution of Ni(NO3_3)2_2 for 'x' seconds to coat the desired layer. The value of x is ________ (Nearest integer) (ρNi\rho_{Ni} (density of Nickel) is 10 g mL, Molar mass of Nickel is 60 g mol1^{-1} F = 96500 C mol1^{-1})

Answer

161

Explanation

Solution

  1. Calculate the volume of the nickel layer: Area = 100 cm2^2 Thickness = 0.001 mm = 0.001×1010.001 \times 10^{-1} cm = 10410^{-4} cm Volume (VV) = Area ×\times Thickness = 100 cm2^2 ×\times 10410^{-4} cm = 10210^{-2} cm3^3

  2. Calculate the mass of nickel to be deposited: Density of Nickel (ρNi\rho_{Ni}) = 10 g mL1^{-1} = 10 g cm3^{-3} Mass (mm) = Volume ×\times Density = 10210^{-2} cm3^3 ×\times 10 g cm3^{-3} = 0.1 g

  3. Determine the charge required for deposition using Faraday's laws: The electrolysis of Ni(NO3_3)2_2 involves the reduction of Ni2+^{2+} ions: Ni2+^{2+}(aq) + 2e^- \rightarrow Ni(s) This means n=2n=2 moles of electrons are required to deposit 1 mole of nickel. Molar mass of Nickel (MM) = 60 g mol1^{-1} Faraday's constant (FF) = 96500 C mol1^{-1} Using Faraday's first law: m=M×Qn×Fm = \frac{M \times Q}{n \times F} Rearranging to find charge (QQ): Q=m×n×FMQ = \frac{m \times n \times F}{M} Q=0.1 g×2×96500 C mol160 g mol1=1930060 C=9653 CQ = \frac{0.1 \text{ g} \times 2 \times 96500 \text{ C mol}^{-1}}{60 \text{ g mol}^{-1}} = \frac{19300}{60} \text{ C} = \frac{965}{3} \text{ C}

  4. Calculate the time taken (x): The relationship between charge (QQ), current (II), and time (tt) is Q=I×tQ = I \times t. Given current I=2I = 2 A. x=QI=965/3 C2 A=9656 sx = \frac{Q}{I} = \frac{965/3 \text{ C}}{2 \text{ A}} = \frac{965}{6} \text{ s} x160.8333...x \approx 160.8333... s

  5. Round to the nearest integer: The value of xx rounded to the nearest integer is 161.