Solveeit Logo

Question

Physics Question on physical world

A metal sphere cools at the rate of 3C/min3^{\circ} C/\min when its temperature is 50C50^{\circ} C . Its rate of cooling when its temperature is 40C40^{\circ} C and the temperature of surrounding is 25C25^{\circ} C is

A

1.3C/min1.3^{\circ} C/\min

B

1.4C/min1.4^{\circ} C/\min

C

1.5C/min1.5^{\circ} C/\min

D

1.8C/min1.8^{\circ} C/\min

Answer

1.8C/min1.8^{\circ} C/\min

Explanation

Solution

(dθdt)1=K(θ1θ0)\left(\frac{d \theta}{d t}\right)_{1}= K \left(\theta_{1}-\theta_{0}\right) \ldots (i) (dθdt)2=K(θ2θ0)\left(\frac{d \theta}{d t}\right)_{2}= K \left(\theta_{2}-\theta_{0}\right) \ldots (ii) (dθ/dt)1(dθ/dt)2=θ1θ2θ2θ0\therefore \frac{(d \theta / d t)_{1}}{(d \theta / d t)_{2}}=\frac{\theta_{1}-\theta_{2}}{\theta_{2}-\theta_{0}} =50254025=\frac{50-25}{40-25} 3(dθ/dt)22515\frac{3}{(d \theta / d t)_{2}} \frac{25}{15} (dθdt)2=1.8C/min \Rightarrow\left(\frac{d \theta}{d t}\right)_{2}=1.8^{\circ} C / \min