Solveeit Logo

Question

Question: A metal rod of length $l$ moves with a constant speed $v = 2$ m/s parallel to a long wire. Current i...

A metal rod of length ll moves with a constant speed v=2v = 2 m/s parallel to a long wire. Current in the long wire is 5 A. Induced emf a cross ends of the rod is ln(PP) microvolts. Find value of PP.

Answer

16

Explanation

Solution

The magnetic field at a distance rr from the wire is B(r)=μ0i2πrB(r) = \frac{\mu_0 i}{2\pi r}. The rod moves perpendicular to this field. The induced emf is given by E=r1r2vB(r)dr\mathcal{E} = \int_{r_1}^{r_2} v B(r) dr. The distances from the wire to the rod's ends are r1=l/3r_1 = l/3 and r2=l/3+l=4l/3r_2 = l/3 + l = 4l/3. Thus, E=l/34l/3vμ0i2πrdr=μ0iv2πln(4l/3l/3)=μ0iv2πln(4)\mathcal{E} = \int_{l/3}^{4l/3} v \frac{\mu_0 i}{2\pi r} dr = \frac{\mu_0 i v}{2\pi} \ln\left(\frac{4l/3}{l/3}\right) = \frac{\mu_0 i v}{2\pi} \ln(4). Substituting the given values: i=5i = 5 A, v=2v = 2 m/s, and μ0=4π×107\mu_0 = 4\pi \times 10^{-7} T m/A. E=(4π×107)(5)(2)2πln(4)=20×107ln(4)=2×106ln(4)\mathcal{E} = \frac{(4\pi \times 10^{-7})(5)(2)}{2\pi} \ln(4) = 20 \times 10^{-7} \ln(4) = 2 \times 10^{-6} \ln(4) Volts. This is 2ln(4)=ln(42)=ln(16)2 \ln(4) = \ln(4^2) = \ln(16) microvolts. Since the induced emf is ln(P)\ln(P) microvolts, we have ln(P)=ln(16)\ln(P) = \ln(16), so P=16P = 16.