Solveeit Logo

Question

Question: A metal rod of length 10 cm and diameter 2 cm is covered with a non conducting substance. One end of...

A metal rod of length 10 cm and diameter 2 cm is covered with a non conducting substance. One end of it is maintained at 80°C, while the other end is put at 0°C. It is found that 20 g of ice melts in 5 min. Find the coefficient of thermal conductivity of metal in Js1m1K1Js^{- 1}m^{- 1}K^{- 1} (Take latent heat of ice is 80 cal g1g^{- 1})

A

4.2

B

6.8

C

7.2

D

8.9

Answer

8.9

Explanation

Solution

Here, length of the rod, Δx=10\Delta x = 10cm = 10×102m10 \times 10^{- 2}m Radius of the rod =22=1cm=102m= \frac{2}{2} = 1cm = 10^{- 2}m

Area of cross sections,

A=πr2=π(102)=π×104m2A = \pi r^{2} = \pi(10^{- 2}) = \pi \times 10^{- 4}m^{2}Now,

ΔT=800=80C\Delta T = 80 - 0 = 80{^\circ}C

Mass of ice melted,

m=20g,L=80calg1m = 20g,L = 80calg^{- 1} Heat conducted,

ΔQ=mL=20×80=1600cal=1600×1.2J\Delta Q = mL = 20 \times 80 = 1600cal = 1600 \times 1.2J

And ΔT=5min=5×60=300s\Delta T = 5\min = 5 \times 60 = 300sAs ΔQΔt=KAΔTΔx\frac{\Delta Q}{\Delta t} = KA\frac{\Delta T}{\Delta x}

Or K=ΔQ/ΔtAΔT/Δx=ΔQΔxΔtAΔTK = \frac{\Delta Q/\Delta t}{A\Delta T/\Delta x} = \frac{\Delta Q\Delta x}{\Delta tA\Delta T}

=1600×4.2×10×102300×π×104×80=8.9Js1m1K1a= \frac{1600 \times 4.2 \times 10 \times 10^{- 2}}{300 \times \pi \times 10^{- 4} \times 80} = 8.9Js^{- 1}m^{- 1}K^{- 1}a