Solveeit Logo

Question

Question: A metal piece of mass 160 g lies in equilibrium inside a glass of water (figure 13-E4). The piece to...

A metal piece of mass 160 g lies in equilibrium inside a glass of water (figure 13-E4). The piece touches the bottom of the glass at a small number of points. If the density of the metal is 8000 kg m3^{-3}, find the normal force exerted by the bottom of the glass on the metal piece.

Answer

1.4 N

Explanation

Solution

The metal piece is in equilibrium under the action of three forces:

  1. Weight (WW) acting downwards.
  2. Buoyant force (FBF_B) acting upwards.
  3. Normal force (NN) exerted by the bottom of the glass acting upwards.

From the equilibrium condition, the sum of upward forces equals the downward force: N+FB=WN + F_B = W Therefore, N=WFBN = W - F_B.

  1. Calculate the weight (WW): Mass of the metal piece, m=160m = 160 g =160×103= 160 \times 10^{-3} kg. Assuming acceleration due to gravity g=10g = 10 m/s2^2. W=mg=(160×103 kg)×(10 m/s2)=1.6W = mg = (160 \times 10^{-3} \text{ kg}) \times (10 \text{ m/s}^2) = 1.6 N.

  2. Calculate the volume of the metal piece (VV): Density of the metal, ρmetal=8000\rho_{metal} = 8000 kg/m3^3. V=mρmetal=160×103 kg8000 kg/m3=0.168000 m3=2×105V = \frac{m}{\rho_{metal}} = \frac{160 \times 10^{-3} \text{ kg}}{8000 \text{ kg/m}^3} = \frac{0.16}{8000} \text{ m}^3 = 2 \times 10^{-5} m3^3.

  3. Determine the submerged volume and calculate the buoyant force (FBF_B): Density of water, ρwater=1000\rho_{water} = 1000 kg/m3^3. Since ρmetal>ρwater\rho_{metal} > \rho_{water} (8000 kg/m3^3 > 1000 kg/m3^3), the metal piece sinks and is fully submerged. So, the submerged volume Vsubmerged=V=2×105V_{submerged} = V = 2 \times 10^{-5} m3^3. The buoyant force is given by Archimedes' principle: FB=ρwaterVsubmergedgF_B = \rho_{water} \cdot V_{submerged} \cdot g FB=(1000 kg/m3)×(2×105 m3)×(10 m/s2)=0.2F_B = (1000 \text{ kg/m}^3) \times (2 \times 10^{-5} \text{ m}^3) \times (10 \text{ m/s}^2) = 0.2 N.

  4. Calculate the normal force (NN): N=WFB=1.6 N0.2 N=1.4N = W - F_B = 1.6 \text{ N} - 0.2 \text{ N} = 1.4 N.