Solveeit Logo

Question

Question: A metal cylinder of length L is subjected to a uniform compressive force F as shown in the figure. T...

A metal cylinder of length L is subjected to a uniform compressive force F as shown in the figure. The material of the cylinder has Young’s modulus Y and Poisson’s ratio σ\sigmaThe change in volume of the cylinder is

A

σFLY\frac{\sigma FL}{Y}

B

(1σ)FLY\frac{(1 - \sigma)FL}{Y}

C

(1+2σ)FLY\frac{(1 + 2\sigma)FL}{Y}

D

(12σ)FLY\frac{(1 - 2\sigma)FL}{Y}

Answer

(12σ)FLY\frac{(1 - 2\sigma)FL}{Y}

Explanation

Solution

: Volume of the cylinder, V=πr2LV = \pi r^{2}L

Volumetric strain

=ΔVV=Δ(πr2L)πr2L= \frac{\Delta V}{V} = \frac{\Delta(\pi r^{2}L)}{\pi r^{2}L}

ΔVV=πr2ΔL+2πrLΔrπr2L\frac{\Delta V}{V} = \frac{\pi r^{2}\Delta L + 2\pi rL\Delta r}{\pi r^{2}L}

=ΔLL+2Δrr= \frac{\Delta L}{L} + \frac{2\Delta r}{r} …(i)

Poisson’s ratio,σ=(Δr/r)(ΔL/L)\sigma = - \frac{(\Delta r/r)}{(\Delta L/L)}

Or Δrr=σΔLL\frac{\Delta r}{r} = - \frac{\sigma\Delta L}{L}

On substituting this value of Δrr\frac{\Delta r}{r}in Eq. (i), we get

ΔVV=ΔLL(12σ)\frac{\Delta V}{V} = \frac{\Delta L}{L}(1 - 2\sigma) …(ii)

Young’s modulus, Y=(F/πr2)(ΔL/L)Y = \frac{(F/\pi r^{2})}{(\Delta L/L)}

orΔLL=Fπr2Yor\frac{\Delta L}{L} = \frac{F}{\pi r^{2}Y}

On substituting this value of ΔLL\frac{\Delta L}{L}in Eq. (ii) we get

ΔVV=Fπr2Y(12σ)\frac{\Delta V}{V} = \frac{F}{\pi r^{2}Y}(1 - 2\sigma)

ΔVπr2L=Fπr2Y(12σ)\frac{\Delta V}{\pi r^{2}L} = \frac{F}{\pi r^{2}Y}(1 - 2\sigma)

ΔV=FLY(12σ)\Delta V = \frac{FL}{Y}(1 - 2\sigma)