Solveeit Logo

Question

Physics Question on mechanical properties of solids

A metal cylinder of length L L is subjected to a uniform compressive force FF as shown in the figure. The material of the cylinder has Young?s modulus YY and Poisson?s ratio σ\sigma. The change in volume of the cylinder is

A

σFLY\frac{\sigma FL}{Y}

B

(1σ)FLY\frac{\left(1-\sigma\right)FL}{Y}

C

(1+2σ)FLY\frac{\left(1+2\sigma\right)FL}{Y}

D

(12σ)FLY\frac{\left(1-2\sigma\right)FL}{Y}

Answer

(12σ)FLY\frac{\left(1-2\sigma\right)FL}{Y}

Explanation

Solution

Volume of the cylinder, V=πr2LV=\pi r^{2}L Volumetric strain =ΔVV=\frac{\Delta V}{V} =Δ(πr2L)πr2L=\frac{\Delta\left(\pi r^{2} L\right)}{\pi r^{2} L} ΔVV\frac{\Delta V}{V} =πr2ΔL+2πrLΔrπr2L=\frac{\pi r^{2}\Delta L+2\pi r L\Delta r}{\pi r^{2}L} =ΔLL=\frac{\Delta L}{L} +2Δrr+\frac{2 \Delta r}{r} \quad (i)\ldots\left(i\right) Poisson?s ratio, σ\sigma =(Δr/r)(ΔL/L)=-\frac{\left(\Delta r/ r\right)}{\left(\Delta L/ L\right)} or \quad Δrr\frac{\Delta r}{r} =σΔLL=-\frac{\sigma\Delta L}{L} On substituting this value of Δrr \frac{\Delta r}{r} in E (i)\left(i\right), we get ΔVV\frac{\Delta V}{V} =ΔLL(12σ)=\frac{\Delta L}{L}\left(1-2\sigma\right) (ii)\quad\ldots\left(ii\right) Young?s modulus, Y=(F/πr2)ΔL/LY=\frac{\left(F /\pi r^{2}\right)}{\Delta L /L} or ΔLL=Fπr2Y\frac{\Delta L}{L}=\frac{F}{\pi r ^{2}Y} On substituting this value of ΔLL\frac{\Delta L}{L} in E (ii)\left(ii\right), we get ΔVV\frac{\Delta V}{V} =Fπr2Y=\frac{F}{\pi r^{2} Y} (12σ)\left(1-2\sigma\right) ΔVπr2L\frac{\Delta V}{\pi r^{2} L} =Fπr2Y=\frac{F}{\pi r^{2} Y} (12σ)\left(1-2\sigma\right) ΔV\Delta V =FLY=\frac{FL}{Y} (12σ)\left(1-2\sigma\right)