Solveeit Logo

Question

Chemistry Question on The solid state

A metal crystallises into two cubic phases, face centred cubic (fcc)(fcc) and body centred cubic (bcc)(bcc), whose unit cell lengths are 3.53.5 ?? and 3.03.0 ??, respectively. The ratio of densities of fccfcc and bccbcc is

A

1.259:11.259 : 1

B

1:1.2591 : 1.259

C

3:23 : 2

D

1.142:11.142 : 1

Answer

1.259:11.259 : 1

Explanation

Solution

Unit cell length for fcc=3.5?fcc=3.5\,? Unit cell length for bcc=3.0?bcc = 3.0 \,? \therefore Density in fcc=n1×at.wt.V1×NAfcc=\frac{n_{1}\times at.wt.}{V_{1}\times N_{A}} Density in bcc=n2×at.wt.V2×NAbcc=\frac{n_{2}\times at.wt.}{V_{2}\times N_{A}} or Density(fcc)Density(bcc)=n1n2×V2V1\frac{\text{Density} \left(fcc\right)}{\text{Density} \left(bcc\right)}=\frac{n_{1}}{n_{2}}\times\frac{V_{2}}{V_{1}} =42×V2V1=\frac{4}{2}\times\frac{V_{2}}{V_{1}} [forfcc,n1=4 forbcc,n2=2]\begin{bmatrix}\therefore for \,fcc,&n_{1}=4\\\ \therefore for \,bcc,&n_{2}=2\end{bmatrix} Volume for fcc=V1=a3=(3.5×108)3cm3fcc=V_{1}=a^{3}=\left(3.5\times10^{-8}\right)^{3}\,cm^{3} and Volume for bcc=V2=a3=(3.0×108)3cm3bcc=V_{2}=a^{3}=\left(3.0\times10^{-8}\right)^{3}\,cm^{3} Density(fcc)Density(bcc)\therefore \frac{\text{Density} \left(fcc\right)}{\text{Density} \left(bcc\right)} =4×(3.0×108)32×(3.5×108)3=\frac{4\times\left(3.0\times10^{-8}\right)^{3}}{2\times\left(3.5\times10^{-8}\right)^{3}} =1.259=1.259 or 1.259:11.259 : 1