Question
Question: A matrix $M$ is said to be idempotent if $M^2 = M$. Now, consider a matrix $A = \begin{bmatrix} 3 & ...
A matrix M is said to be idempotent if M2=M. Now, consider a matrix A=320−3−3−1441 and An=A−1,n∈N. The minimum value of n is n1.

3
Solution
To find the minimum value of n such that An=A−1, we first need to calculate A−1 and then compare it with powers of A.
Given matrix A=320−3−3−1441.
Step 1: Calculate the determinant of A. det(A)=3−3−141−(−3)2041+420−3−1 det(A)=3((−3)(1)−(4)(−1))+3((2)(1)−(4)(0))+4((2)(−1)−(−3)(0)) det(A)=3(−3+4)+3(2−0)+4(−2−0) det(A)=3(1)+3(2)+4(−2) det(A)=3+6−8=1
Since det(A)=1=0, the inverse exists.
Step 2: Calculate the adjoint of A. First, find the cofactor matrix C: C11=−3−141=−3+4=1 C12=−2041=−(2−0)=−2 C13=20−3−1=−2−0=−2
C21=−−3−141=−(−3+4)=−1 C22=3041=3−0=3 C23=−30−3−1=−(−3−0)=3
C31=−3−344=−12+12=0 C32=−3244=−(12−8)=−4 C33=32−3−3=−9+6=−3
The cofactor matrix is C=1−10−23−4−23−3.
The adjoint of A is the transpose of the cofactor matrix: adj(A)=CT=1−2−2−1330−4−3.
Step 3: Calculate A−1. A−1=det(A)1adj(A)=111−2−2−1330−4−3=1−2−2−1330−4−3.
Step 4: Calculate powers of A (A1,A2,A3,…) and compare with A−1. A1=A=320−3−3−1441=A−1.
Now, calculate A2: A2=A⋅A=320−3−3−1441320−3−3−1441 A2=(3)(3)+(−3)(2)+(4)(0)(2)(3)+(−3)(2)+(4)(0)(0)(3)+(−1)(2)+(1)(0)(3)(−3)+(−3)(−3)+(4)(−1)(2)(−3)+(−3)(−3)+(4)(−1)(0)(−3)+(−1)(−3)+(1)(−1)(3)(4)+(−3)(4)+(4)(1)(2)(4)+(−3)(4)+(4)(1)(0)(4)+(−1)(4)+(1)(1) A2=9−6+06−6+00−2+0−9+9−4−6+9−40+3−112−12+48−12+40−4+1=30−2−4−1240−3.
A2=A−1.
Now, calculate A3: A3=A2⋅A=30−2−4−1240−3320−3−3−1441 A3=(3)(3)+(−4)(2)+(4)(0)(0)(3)+(−1)(2)+(0)(0)(−2)(3)+(2)(2)+(−3)(0)(3)(−3)+(−4)(−3)+(4)(−1)(0)(−3)+(−1)(−3)+(0)(−1)(−2)(−3)+(2)(−3)+(−3)(−1)(3)(4)+(−4)(4)+(4)(1)(0)(4)+(−1)(4)+(0)(1)(−2)(4)+(2)(4)+(−3)(1) A3=9−8+00−2+0−6+4+0−9+12−40+3+06−6+312−16+40−4+0−8+8−3=1−2−2−1330−4−3.
Comparing A3 with A−1: A3=1−2−2−1330−4−3 and A−1=1−2−2−1330−4−3. Thus, A3=A−1.
Since A1=A−1 and A2=A−1, the minimum value of n for which An=A−1 is n=3. So, n1=3.
The definition of an idempotent matrix (M2=M) is not directly used in this problem, as matrix A is not idempotent.