Solveeit Logo

Question

Question: A matrix $M$ is said to be idempotent if $M^2 = M$. Now, consider a matrix $A = \begin{bmatrix} 3 & ...

A matrix MM is said to be idempotent if M2=MM^2 = M. Now, consider a matrix A=[334234011]A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix} and An=A1,nNA^n = A^{-1}, n \in N. The minimum value of nn is n1n_1.

Answer

3

Explanation

Solution

To find the minimum value of nn such that An=A1A^n = A^{-1}, we first need to calculate A1A^{-1} and then compare it with powers of AA.

Given matrix A=[334234011]A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}.

Step 1: Calculate the determinant of A. det(A)=33411(3)2401+42301\det(A) = 3 \begin{vmatrix} -3 & 4 \\ -1 & 1 \end{vmatrix} - (-3) \begin{vmatrix} 2 & 4 \\ 0 & 1 \end{vmatrix} + 4 \begin{vmatrix} 2 & -3 \\ 0 & -1 \end{vmatrix} det(A)=3((3)(1)(4)(1))+3((2)(1)(4)(0))+4((2)(1)(3)(0))\det(A) = 3((-3)(1) - (4)(-1)) + 3((2)(1) - (4)(0)) + 4((2)(-1) - (-3)(0)) det(A)=3(3+4)+3(20)+4(20)\det(A) = 3(-3 + 4) + 3(2 - 0) + 4(-2 - 0) det(A)=3(1)+3(2)+4(2)\det(A) = 3(1) + 3(2) + 4(-2) det(A)=3+68=1\det(A) = 3 + 6 - 8 = 1

Since det(A)=10\det(A) = 1 \neq 0, the inverse exists.

Step 2: Calculate the adjoint of A. First, find the cofactor matrix CC: C11=3411=3+4=1C_{11} = \begin{vmatrix} -3 & 4 \\ -1 & 1 \end{vmatrix} = -3 + 4 = 1 C12=2401=(20)=2C_{12} = -\begin{vmatrix} 2 & 4 \\ 0 & 1 \end{vmatrix} = -(2 - 0) = -2 C13=2301=20=2C_{13} = \begin{vmatrix} 2 & -3 \\ 0 & -1 \end{vmatrix} = -2 - 0 = -2

C21=3411=(3+4)=1C_{21} = -\begin{vmatrix} -3 & 4 \\ -1 & 1 \end{vmatrix} = -(-3 + 4) = -1 C22=3401=30=3C_{22} = \begin{vmatrix} 3 & 4 \\ 0 & 1 \end{vmatrix} = 3 - 0 = 3 C23=3301=(30)=3C_{23} = -\begin{vmatrix} 3 & -3 \\ 0 & -1 \end{vmatrix} = -(-3 - 0) = 3

C31=3434=12+12=0C_{31} = \begin{vmatrix} -3 & 4 \\ -3 & 4 \end{vmatrix} = -12 + 12 = 0 C32=3424=(128)=4C_{32} = -\begin{vmatrix} 3 & 4 \\ 2 & 4 \end{vmatrix} = -(12 - 8) = -4 C33=3323=9+6=3C_{33} = \begin{vmatrix} 3 & -3 \\ 2 & -3 \end{vmatrix} = -9 + 6 = -3

The cofactor matrix is C=[122133043]C = \begin{bmatrix} 1 & -2 & -2 \\ -1 & 3 & 3 \\ 0 & -4 & -3 \end{bmatrix}.

The adjoint of A is the transpose of the cofactor matrix: adj(A)=CT=[110234233]\text{adj}(A) = C^T = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}.

Step 3: Calculate A1A^{-1}. A1=1det(A)adj(A)=11[110234233]=[110234233]A^{-1} = \frac{1}{\det(A)} \text{adj}(A) = \frac{1}{1} \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}.

Step 4: Calculate powers of A (A1,A2,A3,A^1, A^2, A^3, \dots) and compare with A1A^{-1}. A1=A=[334234011]A1A^1 = A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix} \neq A^{-1}.

Now, calculate A2A^2: A2=AA=[334234011][334234011]A^2 = A \cdot A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix} A2=[(3)(3)+(3)(2)+(4)(0)(3)(3)+(3)(3)+(4)(1)(3)(4)+(3)(4)+(4)(1)(2)(3)+(3)(2)+(4)(0)(2)(3)+(3)(3)+(4)(1)(2)(4)+(3)(4)+(4)(1)(0)(3)+(1)(2)+(1)(0)(0)(3)+(1)(3)+(1)(1)(0)(4)+(1)(4)+(1)(1)]A^2 = \begin{bmatrix} (3)(3)+(-3)(2)+(4)(0) & (3)(-3)+(-3)(-3)+(4)(-1) & (3)(4)+(-3)(4)+(4)(1) \\ (2)(3)+(-3)(2)+(4)(0) & (2)(-3)+(-3)(-3)+(4)(-1) & (2)(4)+(-3)(4)+(4)(1) \\ (0)(3)+(-1)(2)+(1)(0) & (0)(-3)+(-1)(-3)+(1)(-1) & (0)(4)+(-1)(4)+(1)(1) \end{bmatrix} A2=[96+09+941212+466+06+94812+402+00+3104+1]=[344010223]A^2 = \begin{bmatrix} 9-6+0 & -9+9-4 & 12-12+4 \\ 6-6+0 & -6+9-4 & 8-12+4 \\ 0-2+0 & 0+3-1 & 0-4+1 \end{bmatrix} = \begin{bmatrix} 3 & -4 & 4 \\ 0 & -1 & 0 \\ -2 & 2 & -3 \end{bmatrix}.

A2A1A^2 \neq A^{-1}.

Now, calculate A3A^3: A3=A2A=[344010223][334234011]A^3 = A^2 \cdot A = \begin{bmatrix} 3 & -4 & 4 \\ 0 & -1 & 0 \\ -2 & 2 & -3 \end{bmatrix} \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix} A3=[(3)(3)+(4)(2)+(4)(0)(3)(3)+(4)(3)+(4)(1)(3)(4)+(4)(4)+(4)(1)(0)(3)+(1)(2)+(0)(0)(0)(3)+(1)(3)+(0)(1)(0)(4)+(1)(4)+(0)(1)(2)(3)+(2)(2)+(3)(0)(2)(3)+(2)(3)+(3)(1)(2)(4)+(2)(4)+(3)(1)]A^3 = \begin{bmatrix} (3)(3)+(-4)(2)+(4)(0) & (3)(-3)+(-4)(-3)+(4)(-1) & (3)(4)+(-4)(4)+(4)(1) \\ (0)(3)+(-1)(2)+(0)(0) & (0)(-3)+(-1)(-3)+(0)(-1) & (0)(4)+(-1)(4)+(0)(1) \\ (-2)(3)+(2)(2)+(-3)(0) & (-2)(-3)+(2)(-3)+(-3)(-1) & (-2)(4)+(2)(4)+(-3)(1) \end{bmatrix} A3=[98+09+1241216+402+00+3+004+06+4+066+38+83]=[110234233]A^3 = \begin{bmatrix} 9-8+0 & -9+12-4 & 12-16+4 \\ 0-2+0 & 0+3+0 & 0-4+0 \\ -6+4+0 & 6-6+3 & -8+8-3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}.

Comparing A3A^3 with A1A^{-1}: A3=[110234233]A^3 = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix} and A1=[110234233]A^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}. Thus, A3=A1A^3 = A^{-1}.

Since A1A1A^1 \neq A^{-1} and A2A1A^2 \neq A^{-1}, the minimum value of nn for which An=A1A^n = A^{-1} is n=3n=3. So, n1=3n_1 = 3.

The definition of an idempotent matrix (M2=MM^2=M) is not directly used in this problem, as matrix A is not idempotent.