Solveeit Logo

Question

Question: A matrix ‘A’ is given and it satisfies the given condition \({{A}^{3}}=0\). Find the value of \(I+A+...

A matrix ‘A’ is given and it satisfies the given condition A3=0{{A}^{3}}=0. Find the value of I+A+A2I+A+{{A}^{2}}.
(a) I + A.
(b) (I+A)1{{\left( I+A \right)}^{-1}}.
(c) I – A.
(d) (IA)1{{\left( I-A \right)}^{-1}}.

Explanation

Solution

We start solving the problem by multiplying with ‘–1’ on both sides of A3=0{{A}^{3}}=0. We then add both sides with the Identity matrix. Now we take the product (IA).(I+A+A2)\left( I-A \right).\left( I+A+{{A}^{2}} \right) and calculate it. We use the fact that if A.B=IA.B=I, then B=A1B={{A}^{-1}} and make subsequent arrangements to get the required result.

Complete step by step answer:
Given that we have matrix ‘A’ and it satisfies the condition A3=0{{A}^{3}}=0. We need to find the value of I+A+A2I+A+{{A}^{2}}.
\Rightarrow A3=0{{A}^{3}}=0.
Let us multiply each side with ‘–1’.
\Rightarrow 1×A3=1×0-1\times {{A}^{3}}=-1\times 0.
\Rightarrow A3=0-{{A}^{3}}=0.
We add the Identity matrix ‘I’ on both sides.
\Rightarrow IA3=I+0I-{{A}^{3}}=I+0.
\Rightarrow IA3=II-{{A}^{3}}=I ---(1).
Let us multiply (IA)\left( I-A \right) and (I+A+A2)\left( I+A+{{A}^{2}} \right) with each other.
\Rightarrow (IA).(I+A+A2)=I.(I+A+A2)A.(I+A+A2)\left( I-A \right).\left( I+A+{{A}^{2}} \right)=I.\left( I+A+{{A}^{2}} \right)-A.\left( I+A+{{A}^{2}} \right).
\Rightarrow (IA).(I+A+A2)=I+A+A2(A+A2+A3)\left( I-A \right).\left( I+A+{{A}^{2}} \right)=I+A+{{A}^{2}}-\left( A+{{A}^{2}}+{{A}^{3}} \right).
\Rightarrow (IA).(I+A+A2)=I+A+A2AA2A3\left( I-A \right).\left( I+A+{{A}^{2}} \right)=I+A+{{A}^{2}}-A-{{A}^{2}}-{{A}^{3}}.
\Rightarrow (IA).(I+A+A2)=IA3\left( I-A \right).\left( I+A+{{A}^{2}} \right)=I-{{A}^{3}} ---(2).
We substitute the result obtained from equation (2) in equation (1).
\Rightarrow (IA).(I+A+A2)=I\left( I-A \right).\left( I+A+{{A}^{2}} \right)=I ---(3).
We know that if A.B=IA.B=I, then B=A1B={{A}^{-1}}. We use this result in equation (3).
\Rightarrow (I+A+A2)=(IA)1\left( I+A+{{A}^{2}} \right)={{\left( I-A \right)}^{-1}}.
We got the value of I+A+A2I+A+{{A}^{2}} as (IA)1{{\left( I-A \right)}^{-1}}.
∴ If A3=0{{A}^{3}}=0 then the value of I+A+A2I+A+{{A}^{2}} is equal to (IA)1{{\left( I-A \right)}^{-1}}.

So, the correct answer is “Option D”.

Note: Here the matrix (IA)\left( I-A \right) is considered as invertible while solving the problem. To say that the matrix (IA)\left( I-A \right) invertible, we use the fact that for a nilpotent matrix of order ‘n’ we always have an matrix (IA)\left( I-A \right) which is invertible. Here matrix ‘A’ is a nilpotent matrix of order 3 in the given problem.