Solveeit Logo

Question

Physics Question on rotational motion

A massless rod SS having length 2l2 l has equal point masses attached to its two ends as shown in figure. The rod is rotating about an axis passing through its centre and making angle α\alpha with the axis. The magnitude of change of momentum of rod i.e. dLdt\left|\frac{d L}{d t}\right| equals

A

2ml3ω2sinθcosθ2 m l^{3} \omega^{2} \sin \theta \cdot \cos \theta

B

ml2ω2sin2θm l^{2} \omega^{2} \sin 2 \theta

C

ml2sin2θm l^{2} \sin 2 \theta

D

m1/2l1/2ωsinθcosθm^{1 / 2} l^{1 / 2} \omega \sin \theta \cdot \cos \theta

Answer

ml2ω2sin2θm l^{2} \omega^{2} \sin 2 \theta

Explanation

Solution

The radius of the circle followed by the masses is r=1sinαr=1 \sin \alpha As, angular momentum, L=r×PL = r \times P =r×mv= r \times m v L=Isinθ(mωIsinθ)\Rightarrow | L |=I \sin \theta(m \omega I \sin \theta) On differentiating, we get dLdt=mωl22sinθcosθdθdt\frac{d| L |}{d t} =m \omega l^{2} 2 \sin \theta \cdot \cos \theta \frac{d \theta}{d t} dLdt=2ml2ω2sinθcosθ\Rightarrow \left|\frac{d L}{d t}\right| =2 m l^{2} \omega^{2} \sin \theta \cdot \cos \theta =ml2ω2sin2θ=m l^{2} \omega^{2} \sin 2 \theta