Solveeit Logo

Question

Question: A massless cable of diameter 2.54 cm (1 inch) is tied horizontally between two trees 18 m apart. A t...

A massless cable of diameter 2.54 cm (1 inch) is tied horizontally between two trees 18 m apart. A tightrope walker stands at the center of the cable, giving it a tension of 7300 N. The cable stretches and makes an angle of 1.50° with the horizontal. The Young's modulus of the cable is:

Answer

E4.20×1010E \approx 4.20 \times 10^{10} Pa

Explanation

Solution

Solution

  1. Determine the extension:

For one half of the cable, the horizontal distance is 9 m. When stretched, the half‐cable makes an angle θ=1.50\theta = 1.50^\circ with the horizontal so that its actual length becomes

L=9cosθ.L' = \frac{9}{\cos\theta}.

The extension of each half is

δ=L9=9(1cosθ1).\delta = L' - 9 = 9\left(\frac{1}{\cos\theta}-1\right).

With cos(1.50)0.999657\cos(1.50^\circ) \approx 0.999657,

δ9(1.0003431)9(0.000343)0.003087 m.\delta \approx 9(1.000343-1) \approx 9(0.000343) \approx 0.003087\text{ m}.
  1. Calculate the cross‐sectional area AA:

The cable’s diameter is 2.54 cm, so its radius is

r=2.542 cm=1.27 cm=0.0127 m.r = \frac{2.54}{2}\text{ cm} = 1.27\text{ cm} = 0.0127\text{ m}.

Thus,

A=πr2=π(0.0127)2π(0.00016129)0.0005067 m2.A = \pi r^2 = \pi (0.0127)^2 \approx \pi (0.00016129) \approx 0.0005067\text{ m}^2.
  1. Apply Hooke’s law to relate stress and strain:

The stress in the cable is

σ=TA,\sigma =\frac{T}{A},

and the strain in one half is

ϵ=δ9.\epsilon =\frac{\delta}{9}.

The Young's modulus is given by

E=σϵ=T/Aδ/9=9TAδ.E=\frac{\sigma}{\epsilon} = \frac{T/A}{\delta/9} = \frac{9T}{A\delta}.
  1. Substitute the known values:

Given T=7300NT = 7300\,\text{N},

E=9×73000.0005067×0.003087657001.565×1064.20×1010Pa.E = \frac{9 \times 7300}{0.0005067 \times 0.003087} \approx \frac{65700}{1.565\times10^{-6}} \approx 4.20\times10^{10}\, \text{Pa}.

Explanation (Minimal):

  • Compute extension δ=9(1/cos1.51)0.003087\delta = 9(1/\cos1.5^\circ - 1) \approx 0.003087 m.
  • Find cross-sectional area A=π(0.0127)20.0005067A = \pi (0.0127)^2 \approx 0.0005067 m².
  • Use E=9TAδE = \frac{9T}{A\delta}.
  • Substitute T=7300T = 7300 N and compute E4.20×1010E \approx 4.20 \times 10^{10} Pa.