Solveeit Logo

Question

Question: A mass oscillates along the x-axis according to the law, x = x0 cos \(\left( \omega t - \frac{\pi}{4...

A mass oscillates along the x-axis according to the law, x = x0 cos (ωtπ4)\left( \omega t - \frac{\pi}{4} \right). If the acceleration of the particle is written as a = A cos (ωt+δ\omega t + \delta), then

A

A = x0ω\omega2, δ\delta =3π4\frac{3\pi}{4}

B

A = x0, δ\delta = π4- \frac{\pi}{4}

C

A = x0ω\omega2, δ\delta =π4\frac{\pi}{4}

D

A = x0ω\omega2, δ\delta =π4- \frac{\pi}{4}

Answer

A = x0ω\omega2, δ\delta =3π4\frac{3\pi}{4}

Explanation

Solution

Given, x=x0cos(ωtπ4)x = x_{0}\cos(\omega t - \frac{\pi}{4})

Velocity, v=dxdt=x0ωsin(ωtπ4)v = \frac{dx}{dt} = - x_{0}\omega\sin\left( \omega t - \frac{\pi}{4} \right)

Acceleration, a=dvdt=x0ω2cos(ωtπ4)a = \frac{dv}{dt} = - x_{0}\omega^{2}\cos\left( \omega t - \frac{\pi}{4} \right)

=x0ω2cos[π+(ωtπ4)]= x_{0}\omega^{2}\cos\lbrack\pi + (\omega t - \frac{\pi}{4})\rbrack

=x0ω2cos[ωt+3π4]= x_{0}\omega^{2}\cos\lbrack\omega t + \frac{3\pi}{4}\rbrack

Comparing it with acceleration

a=Acos(ωt+δ),a = A\cos(\omega t + \delta), we getr5

A=x0ω2,δ=(3π4)A = x_{0}\omega^{2},\delta = \left( \frac{3\pi}{4} \right)