Solveeit Logo

Question

Question: A mass of 5 kg is suspended from a spring of stiffness constant 5 N/m. If the frequency of the natur...

A mass of 5 kg is suspended from a spring of stiffness constant 5 N/m. If the frequency of the natural oscillation is 23\frac{2}{\sqrt{3}} times the frequency of the damped oscillation, find the damping constant.

Answer

5 kg/s

Explanation

Solution

  1. Calculate the natural angular frequency: ω0=km=5 N/m5 kg=1\omega_0 = \sqrt{\frac{k}{m}} = \sqrt{\frac{5 \text{ N/m}}{5 \text{ kg}}} = 1 rad/s.
  2. Determine the damped angular frequency: Given f0=23fdf_0 = \frac{2}{\sqrt{3}} f_d, which implies ω0=23ωd\omega_0 = \frac{2}{\sqrt{3}} \omega_d. Thus, ωd=32ω0=32\omega_d = \frac{\sqrt{3}}{2} \omega_0 = \frac{\sqrt{3}}{2} rad/s.
  3. Calculate the damping factor: Using the relation ωd2=ω02γ2\omega_d^2 = \omega_0^2 - \gamma^2, we find γ2=ω02ωd2=12(32)2=134=14\gamma^2 = \omega_0^2 - \omega_d^2 = 1^2 - (\frac{\sqrt{3}}{2})^2 = 1 - \frac{3}{4} = \frac{1}{4}. So, γ=12\gamma = \frac{1}{2} rad/s.
  4. Find the damping constant: The damping constant bb is related by b=2mγb = 2m\gamma. Substituting the values, b=2×5 kg×12 s1=5b = 2 \times 5 \text{ kg} \times \frac{1}{2} \text{ s}^{-1} = 5 kg/s.