Solveeit Logo

Question

Question: A mass of 5 kg is suspended from a spring of stiffness constant 5 N/m. If the frequency of the natur...

A mass of 5 kg is suspended from a spring of stiffness constant 5 N/m. If the frequency of the natural oscillation is 72 times the frequency of the damped oscillation, find the damping constant.

Answer

The damping constant is 105183518410 \sqrt{\frac{5183}{5184}} kg/s.

Explanation

Solution

  1. Calculate Natural Angular Frequency (ω0\omega_0): ω0=km=5 N/m5 kg=1\omega_0 = \sqrt{\frac{k}{m}} = \sqrt{\frac{5 \text{ N/m}}{5 \text{ kg}}} = 1 rad/s.
  2. Determine Damped Angular Frequency (ωd\omega_d): Since f0=72fdf_0 = 72 f_d, we have ω0=72ωd\omega_0 = 72 \omega_d, so ωd=172\omega_d = \frac{1}{72} rad/s.
  3. Calculate Damping Factor (γ\gamma): ωd2=ω02γ2    (172)2=12γ2    γ2=115184=51835184    γ=51835184\omega_d^2 = \omega_0^2 - \gamma^2 \implies (\frac{1}{72})^2 = 1^2 - \gamma^2 \implies \gamma^2 = 1 - \frac{1}{5184} = \frac{5183}{5184} \implies \gamma = \sqrt{\frac{5183}{5184}} rad/s.
  4. Find Damping Constant (bb): b=2mγ=2×5 kg×51835184=1051835184b = 2m\gamma = 2 \times 5 \text{ kg} \times \sqrt{\frac{5183}{5184}} = 10 \sqrt{\frac{5183}{5184}} kg/s.