Solveeit Logo

Question

Physics Question on work, energy and power

A mass mm moving horizontally (along the xaxis)x-axis) with velocity vv collides and sticks to a mass of 3m3m moving vertically upward (along the yy -axis) with velocity 2v2\,v. The final velocity of the combination is

A

34vi^+14vj^\frac{3}{4} v \widehat{i} + \frac{1}{4} v \widehat{j}

B

14vi^+32vj^\frac{1}{4} v \widehat{i} + \frac{3}{2} v \widehat{j}

C

13vi^+23vj^\frac{1}{3} v \widehat{i} + \frac{2}{3} v \widehat{j}

D

23vi^+13vj^\frac{2}{3} v \widehat{i} + \frac{1}{3} v \widehat{j}

Answer

14vi^+32vj^\frac{1}{4} v \widehat{i} + \frac{3}{2} v \widehat{j}

Explanation

Solution

From the law of conservation of linear momentum
mvi^+(3m)(2v)j^mv \,\hat{ i }+(3 m )(2\, v ) \hat{ j }
=4mv=4 \,mv '
v=v4i^+32vj^v'=\frac{v}{4} \hat{i}+\frac{3}{2} v\hat{j}