Solveeit Logo

Question

Physics Question on work, energy and power

A mass m'm' moves with a velocity v'v' and collides inelastically with another identical mass. After collision the 1st1^{st} mass moves with velocity v3\frac{v}{\sqrt{3}} a direction perpendicular to the initial direction of motion. Find the speed of the second mass after collision :

A

vv

B

3v\sqrt{3}\,v

C

23v\frac{2}{\sqrt{3}}\,v

D

v3\frac{v}{\sqrt{3}}

Answer

23v\frac{2}{\sqrt{3}}\,v

Explanation

Solution

In xx-direction mu1+0=0+mvxmu_1 + 0 = 0+ mv_x mv=mvx\Rightarrow mv=mv_{x} vx=v\Rightarrow v_{x}=v In yy-direction 0+0=m(v3)0+0=m\left(\frac{v}{\sqrt{3}}\right) \therefore Velocity of second mass after collision v=(v3)2+v2=43v2v'=\sqrt{\left(\frac{v}{\sqrt{3}}\right)^{2}+v^{2}}=\sqrt{\frac{4}{3}\,v^{2}} v=23v\therefore v '=\frac{2}{\sqrt{3}}\,v