Solveeit Logo

Question

Question: A mass m is suspended from the two coupled springs connected in series. The force constant for sprin...

A mass m is suspended from the two coupled springs connected in series. The force constant for springs are K1K _ { 1 } and K2K _ { 2 } . The time period of the suspended mass will be

A

T=2π(mK1+K2)T = 2 \pi \sqrt { \left( \frac { m } { K _ { 1 } + K _ { 2 } } \right) }

B

T=2π(mK1+K2)T = 2 \pi \sqrt { \left( \frac { m } { K _ { 1 } + K _ { 2 } } \right) }

C

T=2π(m(K1+K2)K1K2)T = 2 \pi \sqrt { \left( \frac { m \left( K _ { 1 } + K _ { 2 } \right) } { K _ { 1 } K _ { 2 } } \right) }

D

T=2π(mK1K2K1+K2)T = 2 \pi \sqrt { \left( \frac { m K _ { 1 } K _ { 2 } } { K _ { 1 } + K _ { 2 } } \right) }

Answer

T=2π(m(K1+K2)K1K2)T = 2 \pi \sqrt { \left( \frac { m \left( K _ { 1 } + K _ { 2 } \right) } { K _ { 1 } K _ { 2 } } \right) }

Explanation

Solution

In series keq=k1k2k1+k2k _ { e q } = \frac { k _ { 1 } k _ { 2 } } { k _ { 1 } + k _ { 2 } }so time period

T=2πm(k1+k2)k1k2T = 2 \pi \sqrt { \frac { m \left( k _ { 1 } + k _ { 2 } \right) } { k _ { 1 } k _ { 2 } } }