Solveeit Logo

Question

Question: A mass m is suspended by means of two coiled spring which have the same length in unstretched condit...

A mass m is suspended by means of two coiled spring which have the same length in unstretched condition as in figure. Their force constant are k1 and k2 respectively. When set into vertical vibrations, the period will be

A

2π(mk1k2)2 \pi \sqrt { \left( \frac { m } { k _ { 1 } k _ { 2 } } \right) }

B

2πm(k1k2)2 \pi \sqrt { m \left( \frac { k _ { 1 } } { k _ { 2 } } \right) }

C

2π(mk1k2)2 \pi \sqrt { \left( \frac { m } { k _ { 1 } - k _ { 2 } } \right) }

D

2π(mk1+k2)2 \pi \sqrt { \left( \frac { m } { k _ { 1 } + k _ { 2 } } \right) }

Answer

2π(mk1+k2)2 \pi \sqrt { \left( \frac { m } { k _ { 1 } + k _ { 2 } } \right) }

Explanation

Solution

Given spring system has parallel combination, so

keq=k1+k2k _ { e q } = k _ { 1 } + k _ { 2 } and time period T=2πm(k1+k2)T = 2 \pi \sqrt { \frac { m } { \left( k _ { 1 } + k _ { 2 } \right) } }