Solveeit Logo

Question

Question: A mass m is attached to four springs of spring constants 2k, 2k, k, k as shown in figure. The mass i...

A mass m is attached to four springs of spring constants 2k, 2k, k, k as shown in figure. The mass is capable of oscillating on a frictionless horizontal floor. If it is displaced slightly and released the frequency of resulting SHM would be –

A

12π\frac { 1 } { 2 \pi }

B

12π\frac { 1 } { 2 \pi } (2k3 m)\sqrt { \left( \frac { 2 \mathrm { k } } { 3 \mathrm {~m} } \right) }

C

12π\frac { 1 } { 2 \pi } (3km)\sqrt { \left( \frac { 3 \mathrm { k } } { \mathrm { m } } \right) }

D

12π\frac { 1 } { 2 \pi } (4km)\sqrt { \left( \frac { 4 \mathrm { k } } { \mathrm { m } } \right) }

Answer

12π\frac { 1 } { 2 \pi } (3km)\sqrt { \left( \frac { 3 \mathrm { k } } { \mathrm { m } } \right) }

Explanation

Solution

Net force constant k¢ =+ k + k = 3k

T = 2p mk\sqrt { \frac { \mathrm { m } } { \mathrm { k } ^ { \prime } } }