Solveeit Logo

Question

Question: A marble starts falling from rest on a smooth inclined plane of inclination α. After covering distan...

A marble starts falling from rest on a smooth inclined plane of inclination α. After covering distance h the ball rebounds off the plane. The distance from the impact point where the ball rebounds for the second time is

A

8h cosα

B

8h sin α

C

2h tan α

D

4h sin α

Answer

8h sin α

Explanation

Solution

Velocity before strike u = √2gh

Component of acceleration along the inclined plane = g sin α and the perpendicular component = g cos α

Using S = ut + 1/2 at2

For vertical direction we get,

0 = v cos αt – 1/2 g cosαt2 and

For horizontal direction

x = u sinαt + 1/2 g sin αt2

= u sin α 2ug+12gsinα(2ug)2(Qt=2ug)\frac{2u}{g} + \frac{1}{2}g\sin\alpha\left( \frac{2u}{g} \right)^{2}\left( Qt = \frac{2u}{g} \right)

= 2u2sinαg+2u2sinαg=4u2sinαg\frac{2u^{2}\sin\alpha}{g} + \frac{2u^{2}\sin\alpha}{g} = \frac{4u^{2}\sin\alpha}{g}

= 4 × 2gh×sinαg\frac{2gh \times \sin\alpha}{g} = 8h sin α