Solveeit Logo

Question

Physics Question on Motion in a plane

A man wants to reach from AA to the opposite corner of the square CC (Figure). The sides of the square are 100m100\,m each. AA central square of 50m×50m50\,m \times 50\,m is filled with sand. Outside this square, he can walk at a speed 1ms11\,m\,s^{-1}. In the central square, he can walk only at a speed of vms1(v<1)v\,ms^{-1}\, (v < 1). What is smallest value of vv for which he can reach faster via a straight path through the sand than any path in the square outside the sand?

A

0.18ms10.18\,ms^{-1}

B

0.81ms10.81\,ms^{-1}

C

0.5ms10.5\,ms^{-1}

D

0.95ms10.95\,ms^{-1}

Answer

0.81ms10.81\,ms^{-1}

Explanation

Solution

AC=(100)2+(100)2AC=\sqrt{\left(100\right)^{2}+\left(100\right)^{2}} =1002m=100\sqrt{2}\,m PQ=(50)2+(50)2PQ=\sqrt{\left(50\right)^{2}+\left(50\right)^{2}} =502m=50\sqrt{2}\,m AP=ACPQ2AP=\frac{AC-PQ}{2} =10025022=\frac{100\sqrt{2}-50\sqrt{2}}{2} =252m=25\sqrt{2}\,m QC=AP=252mQC=AP=25\sqrt{2}\,m, AR=(75)2+(25)2AR=\sqrt{\left(75\right)^{2}+\left(25\right)^{2}} =2510m=25\sqrt{10}\,m RC=AR=2510mRC=AR=25\sqrt{10}\,m Consider the straight line path APQCAPQC through the sand. Time taken to go from AA to CC via this path Tsand=AP+QC1+PQvT_{sand}=\frac{AP+QC}{1}+\frac{PQ}{v} =252+2521+502v=\frac{25\sqrt{2}+25\sqrt{2}}{1}+\frac{50\sqrt{2}}{v} =502[1v+1]=50\sqrt{2}\left[\frac{1}{v}+1\right] The shortest path outside the sand will be ARCARC. Time taken to go from AA to CC via this path Toutside=AR+RC1T_{outside}=\frac{AR+RC}{1} =2510+25101=\frac{25\sqrt{10}+25\sqrt{10}}{1} =5010=50\sqrt{10} Tsand<Toutside\because T_{sand} < T_{outside}\, 502[1v+1]<5010\therefore 50\sqrt{2}\left[\frac{1}{v}+1\right] < 50\sqrt{10} 1v+1<5\Rightarrow \frac{1}{v}+1 < \sqrt{5} or 1v<51\frac{1}{v} < \sqrt{5}-1 or v>151v > \frac{1}{\sqrt{5} -1} 0.81ms1\approx0.81\,ms^{-1}