Solveeit Logo

Question

Question: A man stands on a rotating platform with his arms stretched holding a 5 kg weight in each hand. The ...

A man stands on a rotating platform with his arms stretched holding a 5 kg weight in each hand. The angular speed of the platform is 1.2 rev s-1. The moment of inertia of the man together with the platform may be taken to be constant and equal to 6 kg m2. If the man brings his arms close to his chest with the distance of each weight from the axis changing from 100 cm to 20 cm. The new angular speed of the platform is

A

2 rev s-1

B

3 rev s-1

C

5 rev s-1

D

6 rev s-1

Answer

3 rev s-1

Explanation

Solution

Initial moment of inertia,

Initial angular velocity,

ω1=1.2revs1\omega _ { 1 } = 1.2 \mathrm { revs } ^ { - 1 }

Initial angular momentum is

Final moment of inertia,

Final angular speed, = ω2\omega _ { 2 }

Final angular momentum is,

l2=I2ω2l _ { 2 } = \mathrm { I } _ { 2 } \omega _ { 2 }

According to law of conservation of angular momentum,

or

ω2=\omega _ { 2 } = I1ω1I2=(16kgm2)(1.2revs1)(6.4 kg m2)=3revs1\frac { \mathrm { I } _ { 1 } \omega _ { 1 } } { I _ { 2 } } = \frac { \left( 16 \mathrm { kgm } ^ { 2 } \right) \left( 1.2 \mathrm { revs } ^ { - 1 } \right) } { \left( 6.4 \mathrm {~kg} \mathrm {~m} ^ { 2 } \right) } = 3 \mathrm { revs } ^ { - 1 }