Solveeit Logo

Question

Question: A man standing on the deck of a ship, which is 10m above the water level. He observes the angle of e...

A man standing on the deck of a ship, which is 10m above the water level. He observes the angle of elevation of the top of a lighthouse as 6060^\circ and the angle of depression of the base of the lighthouse as 3030^\circ . Find the height of the light house.

A) 40m40m
B) 50m50m
C) 60m60m
D) 30m30m

Explanation

Solution

In any right-angled triangle, for any angle:

The sine of the angle =        the length of the opposite sidethe length of the hypotenuse                                             (a)                                                                                                                                         The cosine of the angle =    the length of the adjacent side  the length of the hypotenuse                                     (b)                                                                               The tangent of the angle =            the length of the opposite side    the length of the adjacent side                            (c)                                                    The{\text{ }}sine{\text{ }}of{\text{ }}the{\text{ }}angle{\text{ }} = \;\;\;\;\dfrac{{the{\text{ }}length{\text{ }}of{\text{ }}the{\text{ }}opposite{\text{ }}side}}{{the{\text{ }}length{\text{ }}of{\text{ }}the{\text{ }}hypotenuse}}\;\;\;\;\;\;\;\;\;\;\;{\text{ }}\;{\text{ }}\;{\text{ }}\; \ldots \; \ldots \; \ldots \; \ldots \; \ldots \; \ldots \; \ldots \;(a){\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;\;\;\;\;\;\;\;\;\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \\\ The{\text{ }}cosine{\text{ }}of{\text{ }}the{\text{ }}angle{\text{ }} = \;\;\dfrac{{the{\text{ }}length{\text{ }}of{\text{ }}the{\text{ }}adjacent{\text{ }}side\;}}{{the{\text{ }}length{\text{ }}of{\text{ }}the{\text{ }}hypotenuse}}\;\;\;\;\;\;\;\;{\text{ }}\;{\text{ }}\;{\text{ }} \ldots \; \ldots \; \ldots \; \ldots \; \ldots \; \ldots \; \ldots \;(b){\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;\;\;\;\;\;\;\;\;\;\;\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;\;\;\;\; \\\ The{\text{ }}tangent{\text{ }}of{\text{ }}the{\text{ }}angle{\text{ }} = \;\;\;\;\;\;\dfrac{{the{\text{ }}length{\text{ }}of{\text{ }}the{\text{ }}opposite{\text{ }}side}}{{\;\;the{\text{ }}length{\text{ }}of{\text{ }}the{\text{ }}adjacent{\text{ }}side}}\;\;\;\;\;\;\; \ldots \; \ldots \; \ldots \; \ldots \; \ldots \; \ldots \; \ldots \;(c){\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \\\

Complete step-by-step answer:
Let CD be the lighthouse and suppose the man is standing on the deck of a ship at point A.
The angle of elevation is the angle between the horizontal line of sight and the line of sight up to an object. So, the angle of depression of the base C of the lighthouse CD observed from A is 3030^\circ
The angle of depression is the angle between the horizontal line of sight and the line of sight down to an object. So, the angle of elevation of the top D of the lighthouse CD observed from A is 6060^\circ
So, EAD=60\angle EAD = 60^\circ and BCA=30\angle BCA = 30^\circ
In AED\vartriangle AED,using property (c ) from the hint:-
tan60=DEAE=hx h=xtan60 h=3x(1)  \Rightarrow \tan 60^\circ = \dfrac{{DE}}{{AE}} = \dfrac{h}{x} \\\ \Rightarrow h = x\tan 60^\circ \\\ \Rightarrow h = \sqrt 3 x \ldots \ldots \ldots \ldots \ldots \ldots (1) \\\
In ABC\vartriangle ABC,using property (c ) from the hint:-
tan30=ABBC=10x 10=xtan30 x=103(2)  \Rightarrow \tan 30^\circ = \dfrac{{AB}}{{BC}} = \dfrac{{10}}{x} \\\ \Rightarrow 10 = x\tan 30^\circ \\\ \Rightarrow x = 10\sqrt 3 \ldots \ldots \ldots \ldots \ldots \ldots (2) \\\
Now substitute the value of x from equation (2) to equation (1):
h=3x h=3(103) h=103(3) h=10(3) h=30m  \Rightarrow h = \sqrt 3 x \\\ \Rightarrow h = \sqrt 3 (10\sqrt 3 ) \\\ \Rightarrow h = 10\sqrt 3 (\sqrt 3 ) \\\ \Rightarrow h = 10(3) \\\ \Rightarrow h = 30m \\\

So, option (D) is the correct answer.

Note: If you are only looking to estimate a distance, then you can ignore the height of the person taking the measurements. However, the height of the person will matter more in situations where the distances or lengths involved are smaller.
Please remember the values of these to solve such kinds of questions.

Angle in DegreesSinCosTan
00^\circ 010
3030^\circ 12\dfrac{1}{2}32\dfrac{{\sqrt 3 }}{2}13\dfrac{1}{{\sqrt 3 }}
4545^\circ 12\dfrac{1}{{\sqrt 2 }}12\dfrac{1}{{\sqrt 2 }}1
6060^\circ 32\dfrac{{\sqrt 3 }}{2}12\dfrac{1}{2}3\sqrt 3
9090^\circ 10\infty