Solveeit Logo

Question

Mathematics Question on Probability

A man speaks truth 2 out of 3 times. He picks one of the natural numbers in the set S = {1, 2, 3, 4, 5, 6, 7} and reports that it is even. The probability that it is actually even is

A

110\frac{1}{10}

B

25\frac{2}{5}

C

35\frac{3}{5}

D

15\frac{1}{5}

Answer

35\frac{3}{5}

Explanation

Solution

S=\left\\{1,2,3,4,5,6,7\right\\}
E1=E_{1}= An even number is picked, E2E_{2} = An odd number is picked
P(E1)=37,P(E2)=47P\left(E_{1}\right)=\frac{3}{7}, P\left(E_{2}\right)=\frac{4}{7}
E : A man reports an even number
P(EE1)=23P\left(E| E_{1}\right)=\frac{2}{3}
P(EE2)=13P\left(E |E_{2}\right)=\frac{1}{3}
Requiredprobability=P(E1E)Required \, probability =P\left(E_{1}|E\right)
P(EE1)P(E1)P(EE1)P(E1)+P(EE2)P(E2)\frac{P\left(E |E_{1}\right)P\left(E_{1}\right)}{P\left(E| E_{1}\right)P\left(E_{1}\right)+P\left(E| E_{2}\right)P\left(E_{2}\right)}
=(23)(37)(23)(37)+(13)(47)=66+4=35=\frac{\left(\frac{2}{3}\right)\left(\frac{3}{7}\right)}{\left(\frac{2}{3}\right)\left(\frac{3}{7}\right)+\left(\frac{1}{3}\right)\left(\frac{4}{7}\right)}=\frac{6}{6+4}=\frac{3}{5}