Solveeit Logo

Question

Physics Question on Ray optics and optical instruments

A man running at a speed 5m/s5 \,m/s is viewed in the side view mirror of radius of curvature R=2mR = 2\, m of a stationary car. Calculate the speed of image when the man is at a distance of 9m9 \,m from the mirror

A

0.3m/s0.3 \,m/s

B

0.2m/s0.2 \,m/s

C

0.1m/s0.1\, m/s

D

0.05m/s0.05 \,m/s

Answer

0.05m/s0.05 \,m/s

Explanation

Solution

A convex mirror is used for this purpose
According to mirror formula 1v+1u=1f\frac{1}{v}+\frac{1}{u}=\frac{1}{f}
Differentiate w.r.t. time tt
ddt[1V]+ddt[1u]=ddt[1f]\frac{d}{dt} \left[\frac{1}{V}\right]+\frac{d}{dt} \left[\frac{1}{u}\right]=\frac{d}{dt} \left[\frac{1}{f}\right]
1v2dvdt1u2dudt=0-\frac{1}{v^{2}} \frac{dv}{dt}-\frac{1}{u^{2}} \frac{du}{dt}=0
dvdt=v2u2dudt\frac{dv}{dt}=-\frac{v^{2}}{u^{2}} \frac{du}{dt}
Also to find vv
1v+1u=1f\frac{1}{v}+\frac{1}{u}=\frac{1}{f}
1v=1f1u=1(19)\frac{1}{v}=\frac{1}{f}-\frac{1}{u}=1-\left(\frac{1}{-9}\right)
1v=9+19=109\frac{1}{v}=\frac{9+1}{9}=\frac{10}{9}
v=910\Rightarrow v=\frac{9}{10}
dvdt=(910)×1(9)2×(5)\therefore \frac{dv}{dt}=-\left(\frac{9}{10}\right)\times\frac{1}{\left(-9\right)^{2}}\times\left(5\right)
=0.05m/s=0.05 m/ s