Solveeit Logo

Question

Question: A man observes a car from the top of a tower, which is moving towards the tower with a uniform speed...

A man observes a car from the top of a tower, which is moving towards the tower with a uniform speed. If the angle of depression of the car changes from 3030^\circ to 4545^\circ in 1212 minutes. Find the time taken by the car now to reach the tower.

Explanation

Solution

Hint : We can use the concept of trigonometric ratio. Drawing the diagram and finding which ratio will help to solve the question is the key.
Formula Required:
tanθ=opposite sideadjacent side{\text{tan}}\theta = \dfrac{{{\text{opposite side}}}}{{{\text{adjacent side}}}}

tan30=13 tan45=1  \tan 30^\circ = \dfrac{1}{{\sqrt 3 }} \\\ \tan 45^\circ = 1 \\\
3=1.732\sqrt 3 = 1.732
Distance is the product of speed and time.

Complete step-by-step answer :
Given: man observes a car from the top of a tower
Car is moving at a uniform speed.
Angle of depression of the car changes from 3030^\circ to 4545^\circ in 1212 minutes.
We need to find time taken by the car from second position to reach the bottom of the tower.
Let’s consider the below figure,

Where,
AB{\text{AB}} is the height of the tower
Initial position of the car is at D{\text{D}}
Next position of the car is at C{\text{C}}
3030^\circ and 4545^\circ are the angle of depressions of a car from the top of the tower.
Let CD=d1{\text{CD}} = {{\text{d}}_1}
CB=d2{\text{CB}} = {{\text{d}}_2}
Time taken from D{\text{D}} to C{\text{C}} is t1{{\text{t}}_{\text{1}}}
According to the question, t1=12{{\text{t}}_{\text{1}}} = 12 minutes.
Time taken from C{\text{C}} to B{\text{B}} is t2{{\text{t}}_2}
From Triangle ABC,
tan45 = opposite side to 45adjacent side to 45 tan45 = ABBC   {\text{tan45}}^\circ {\text{ = }}\dfrac{{{\text{opposite side to 45}}^\circ }}{{{\text{adjacent side to 45}}^\circ }} \\\ \Rightarrow {\text{tan45}}^\circ {\text{ = }}\dfrac{{{\text{AB}}}}{{{\text{BC}}}} \;
We know that tan45=1{\text{tan45}}^\circ = {\text{1}}
1=ABBC AB=BC   \Rightarrow {\text{1}} = \dfrac{{{\text{AB}}}}{{{\text{BC}}}} \\\ \Rightarrow {\text{AB}} = {\text{BC}} \;
AB=BC=d2\Rightarrow {\text{AB}} = {\text{BC}} = {{\text{d}}_{\text{2}}} …………..Equation(1)
From Triangle ABD,
tan30 = opposite side to 30adjacent side to 30 tan30=ABBD tan30=ABBC + CD   {\text{tan30}}^\circ {\text{ = }}\dfrac{{{\text{opposite side to 30}}^\circ }}{{{\text{adjacent side to 30}}^\circ }} \\\ \Rightarrow {\text{tan30}}^\circ = \dfrac{{{\text{AB}}}}{{{\text{BD}}}} \\\ \Rightarrow {\text{tan30}}^\circ = \dfrac{{{\text{AB}}}}{{{\text{BC + CD}}}} \;
We know that tan30=13{\text{tan30}}^\circ = \dfrac{{\text{1}}}{{\sqrt 3 }}
13=ABBC + CD\Rightarrow \dfrac{{\text{1}}}{{\sqrt 3 }} = \dfrac{{{\text{AB}}}}{{{\text{BC + CD}}}}
BC + CD=3AB\Rightarrow {\text{BC + CD}} = \sqrt 3 {\text{AB}} …………..Equation(2)
Substituting Equation(1) in Equation(2) we get,
d2+d1=3d2\Rightarrow {{\text{d}}_{\text{2}}} + {{\text{d}}_{\text{1}}} = \sqrt {\text{3}} {{\text{d}}_{\text{2}}} ( CD = d1{\text{CD = }}{{\text{d}}_1} and CB = d2{\text{CB = }}{{\text{d}}_2} ) ……….Equation(3)
Distance is the product of speed and time.
d1 = s1×t1 d1 = s×12  \Rightarrow {{\text{d}}_{\text{1}}}{\text{ = }}{{\text{s}}_{\text{1}}} \times {{\text{t}}_{\text{1}}} \\\ \Rightarrow {{\text{d}}_{\text{1}}}{\text{ = s}} \times {\text{12}} \\\
Similarly,
d2=s2×t2 d2=s×t2  \Rightarrow {{\text{d}}_{\text{2}}} = {{\text{s}}_{\text{2}}} \times {{\text{t}}_{\text{2}}} \\\ \Rightarrow {{\text{d}}_{\text{2}}} = {\text{s}} \times {{\text{t}}_{\text{2}}} \\\
Since the car travels with uniform speed s1=s2=s{{\text{s}}_{\text{1}}} = {{\text{s}}_{\text{2}}} = {\text{s}}
Now substituting the values of d1{{\text{d}}_{\text{1}}} and d2{{\text{d}}_2} in equation (3) we get,

d2+d1=3d2 s×t2+s×12 = 3(s×t2) t2+12 = 3×t2 (31)t2=12 t2=1231 \Rightarrow {{\text{d}}_{\text{2}}} + {{\text{d}}_{\text{1}}} = \sqrt {\text{3}} {{\text{d}}_{\text{2}}} \\\ \Rightarrow {\text{s}} \times {{\text{t}}_2} + {\text{s}} \times 12{\text{ = }}\sqrt {\text{3}} \left( {{\text{s}} \times {{\text{t}}_2}} \right) \\\ \Rightarrow {{\text{t}}_2} + 12{\text{ = }}\sqrt {\text{3}} \times {{\text{t}}_2} \\\ \Rightarrow \left( {\sqrt {\text{3}} - 1} \right){{\text{t}}_2} = 12 \\\ \Rightarrow {{\text{t}}_2} = \dfrac{{12}}{{\sqrt {\text{3}} - 1}}

Approximating 3=1.732\sqrt 3 = 1.732 we get,
t2=16.39{{\text{t}}_{\text{2}}} = {\text{16}}{\text{.39}} Minutes.
Therefore time taken by the car from second position to reach the bottom of the tower is 16.39{\text{16}}{\text{.39}} minutes.
So, the correct answer is “ 16.39{\text{16}}{\text{.39}} minutes”.

Note : In the questions involving heights and distances concept the diagram leads to forming right triangles, In that case the questions tests us about the trigonometric ratios. We need to have an idea about the definition of trigonometric ratios and the values of angle of the same. As per the data given in the question we need to figure out which ratio will help us to find the answer.