Solveeit Logo

Question

Question: ­­A man measures the period of a simple pendulum inside a stationary lift and finds it to be T sec. ...

­­A man measures the period of a simple pendulum inside a stationary lift and finds it to be T sec. If the lift accelerates upwards with an acceleration g/4g/4, then the period of the pendulum will be

A

T

B

T4\frac{T}{4}

C

2T5\frac{2T}{\sqrt{5}}

D

2T52T\sqrt{5}

Answer

2T5\frac{2T}{\sqrt{5}}

Explanation

Solution

In stationary lift T=2πlgT = 2\pi\sqrt{\frac{l}{g}}

In upward moving lift

T=2πl(g+a)T^{'} = 2\pi\sqrt{\frac{l}{(g + a)}}

(a=a =Acceleration of lift)

\Rightarrow TT=gg+a=g(g+g4)=45\frac{T^{'}}{T} = \sqrt{\frac{g}{g + a}} = \sqrt{\frac{g}{\left( g + \frac{g}{4} \right)}} = \sqrt{\frac{4}{5}} T=2T5\Rightarrow T^{'} = \frac{2T}{\sqrt{5}}