Solveeit Logo

Question

Physics Question on mechanical properties of solids

A man grows into a giant such that his linear dimensions increase by a factor of 99. Assuming that his density remains same, the stress in the leg will change by a factor of :

A

9

B

19\frac{1}{9}

C

81

D

181\frac{1}{81}

Answer

9

Explanation

Solution

vfvi=93\frac{v_{f}}{v_{i}}=9^{3}
\because Density remains same
So, mass \propto Volume
mfmi=93\frac{m_{f}}{m_{i}}=9^{3}
( Area )f( Area )i=92\frac{(\text { Area }) f}{(\text { Area })_{i}}=9^{2}
Stress =( Mass )×g Area =\frac{(\text { Mass }) \times g}{\text { Area }}
σ2σ1=(mfmi)(AiAf)\frac{\sigma_{2}}{\sigma_{1}} =\left(\frac{m_{f}}{m_{i}}\right)\left(\frac{A_{i}}{A_{f}}\right)
=9392=9=\frac{9^{3}}{9^{2}}=9