Solveeit Logo

Question

Physics Question on Circular motion

A man carrying a monkey on his shoulder does cycling smoothly on a circular track of radius 9m9 \, \text{m} and completes 120120 revolutions in 33 minutes. The magnitude of centripetal acceleration of the monkey is (in m/s2\text{m/s}^2):

A

zero

B

16π2m/s216 \pi^2 \, \text{m/s}^2

C

4π2m/s24 \pi^2 \, \text{m/s}^2

D

57600π2m/s257600 \pi^2 \, \text{m/s}^2

Answer

16π2m/s216 \pi^2 \, \text{m/s}^2

Explanation

Solution

Given:
- Radius of the circular track: R=9mR = 9 \, \text{m}
- Number of revolutions completed: 120 revolutions
- Time taken: 3 minutes

Step 1: Calculate the Angular Velocity
The angular velocity ω\omega is given by:

ω=Total revolutionsTime taken×2πrad/s.\omega = \frac{\text{Total revolutions}}{\text{Time taken}} \times 2\pi \, \text{rad/s}.

Substituting the given values:

ω=120revolutions3minutes×2πrad1revolution.\omega = \frac{120 \, \text{revolutions}}{3 \, \text{minutes}} \times \frac{2\pi \, \text{rad}}{1 \, \text{revolution}}.

Converting time to seconds:

ω=120×2π3×60rad/s=4π3rad/s.\omega = \frac{120 \times 2\pi}{3 \times 60} \, \text{rad/s} = \frac{4\pi}{3} \, \text{rad/s}.

Step 2: Calculate the Centripetal Acceleration
The centripetal acceleration acentripetala_{\text{centripetal}} is given by:

acentripetal=ω2R.a_{\text{centripetal}} = \omega^2 R.

Substituting the values of ω\omega and RR:

acentripetal=(4π3)2×9.a_{\text{centripetal}} = \left(\frac{4\pi}{3}\right)^2 \times 9.

Simplifying:

acentripetal=16π29×9=16π2m/s2.a_{\text{centripetal}} = \frac{16\pi^2}{9} \times 9 = 16\pi^2 \, \text{m/s}^2.

Therefore, the magnitude of the centripetal acceleration of the monkey is 16π2m/s216\pi^2 \, \text{m/s}^2.